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Introduction

In this dissertation we explore projective Fraïssé theory and its applications, as well
as limitations, to the study of compact metrizable spaces. The goal of projective Fraïssé
theory is to approximate spaces via classes of finite structures and glean topological or
dynamical properties of the spaces by relating them to combinatorial features of the
class of structures. Using the framework of compact metrizable structures, we establish
general results which expand and help contextualize previous works in the field, and
apply them to study a class of one-dimensional spaces, which we call fences. We isolate a
class of finite structures whose projective Fraïssé limit approximates a distinctive fence
— the Fraïssé fence — which we characterize topologically. We explore homogeneity
and universality features of the Fraïssé fence and the properties of its endpoints, and
provide some results on the dynamics of its group of homeomorphisms.

Projective Fraïssé theory was developed in the wake of the seminal paper [KPT05]
by Kechris, Pestov, and Todorcevic, which established a link between topological dy-
namics, Fraïssé theory, and Ramsey theory. If G is a topological group, a G-flow is a
compact space X together with a continuous G-action. A G-flow is minimal if every
orbit is dense. A key result of abstract topological dynamics is that each topological
group G admits a universal minimal flow — or UMF for short — M(G), which is,
furthermore, unique [Ell60]. The UMF of a topological group G is an interesting topo-
logical invariant of G, and its study has attracted widespread attention from a diverse
array of fields.

In various circumstances, M(G) is known to be non-metrizable. This is the case
for countable discrete groups and locally compact non-compact groups. On the other
hand, there are non-trivial groups whose UMF is a singleton. These groups are called
extremely amenable, since it follows that their flows admit a fixed point. A link be-
tween extreme amenability and Ramsey-type phenomena was noticed in [Pes02], and
a general framework for the case of automorphism groups of countable structures was
established in [KPT05] (subsequently generalized by Nguyen Van Thé in [NVT13]).
The authors use Ramsey theoretical notions to characterize extremely amenable auto-
morphism groups of (direct) Fraïssé structures and give sufficient conditions — later
proved to be necessary by Zucker in [Zuc16] — for metrizability of the UMF, of which
they also provide an explicit description.
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A long-standing open question is whether M(Homeo(P )) ∼= P , holds for the pseudo-
arc P , a homogeneous one-dimensional continuum, [Usp00]. In [IS06], Irwin and
Solecki presented a dualization of usual Fraïssé theory which they employed to study
the pseudo-arc, obtaining, among other results, a novel characterization of the space.
Projective Fraïssé theory, as it was dubbed, has since been extensively employed to
investigate topological and dynamical properties of compact metrizable spaces, see
[Cam10,Kwi12,Kwi14,PS18,PS20] for examples beyond the ones explored below.

Typically, the compact metrizable spaces under consideration are realized as a quo-
tient of a projective limit of finite structures in a relational language which contains a
binary relation symbol R, whose interpretation on the limit is the equivalence relation
which gives rise to the quotient. The limit is called the prespace, and can be understood
as the combinatorial model of its quotient. On the finite structures, R is not forced to
be an equivalence relation. Indeed, in most cases it is symmetric and reflexive but not
transitive: the structures can be seen as reflexive graphs with additional structure.

We use the notion of compact metrizable structure, introduced in [RZ18], to give a
unified presentation of prespaces and their quotients. These are compact metrizable
spaces which are also L-structures, in a relational language L, such that the interpre-
tations of the relation symbols are closed sets. The maps between compact metrizable
structures in which we are interested are epimorphisms, continuous surjections such
that the structure of the codomain is the image of the structure of the domain.

In Chapter 1 we present the theory, we introduce novel notions and establish com-
binatorial criteria which are of general interest, and we test the scope and limits of this
approach. Lemma 1.2.3 characterizes which projective sequences of structures in a lan-
guage containing a binary relation symbol R have limits on which R is an equivalence
relation, and Lemma 1.3.4 gives conditions under which the resulting quotient map is
irreducible. The irreducibility condition entails a correspondence between structures
in the projective sequence and regular quasi-partitions of the quotient, which in turn
aids the combinatorial-topological translation. For each family G of finite structures
we define the class JGK of compact metrizable structures for which such combinatorial-
topological bridge holds. We use such notion to give conditions under which there is
an approximately projectively homogeneous element in JGK.

Many proofs in the domain of projective Fraïssé theory are carried out in a context
dependent fashion and have thus far eluded clean generalizations. A reason is to be
found in the lack of a clear understanding of which spaces are amenable to be studied
with projective Fraïssé limits. We give partial results in this direction in Sections 1.5
and 1.6, and Chapter 2. First we recontextualize a result by Panagiotopoulus [Pan16]
which shows that in a more powerful setting all compact metrizable spaces are closely
approximated by projective Fraïssé limits. Then we show that an analogous result
does not hold in the original, less expressive, setting: all closed manifolds of dimension
greater than one, as well as the Hilbert cube [0, 1]N, cannot be closely approximated.
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Incidentally, it has been recently proved in [GTZ19] that the UMFs of the groups of
homeomorphism of the above spaces are not metrizable.

In Chapter 2, which is based on [BC17], we concentrate on the question of which
compact metrizable spaces appear as domains of quotients of projective Fraïssé limits.
We note that, if we admit infinite first order languages, then every compact metrizable
space can be obtained as a quotient of a projective Fraïssé limit. We then restrict
our attention to finite languages and prove, in Section 2.2, that the class of spaces
that can be obtained as quotients of projective Fraïssé limits is closed under finite
disjoint unions, finite products, and particular quotients satisfying some extra technical
conditions. Section 2.3 presents some examples: after showing that arcs can be obtained
as quotients of projective Fraïssé limits in a finite language, the results of Section 2.2
allow us to extend this property to hypercubes and graphs.

Chapters 3 and 4 are partially based on [BC20]. Using projective Fraïssé theory, we
introduce and begin the study of a new class of topological spaces, which we call fences.
These are the compact metrizable spaces whose connected components are either points
or arcs. Among them, we define the subclass of smooth fences and characterize them
as those fences admitting an embedding in 2N × [0, 1].

In Chapter 3 we focus on a family F of structures — finite partial orders whose
Hasse diagram is a forest — which we show (Theorem 3.1.6) is projective Fraïssé; its
limit F admits a quotient F/RF which is a smooth fence. This space does not seem
to appear in the literature, and we call it the Fraïssé fence. Chapter 4 is devoted to
its study. We isolate a cofinal subclass F0 of F and we show that JF0K is the class
of smooth fences (Theorem 3.4.1 and Corollary 3.4.4). We exploit the bridge between
the combinatorial world and the topological one, which this result creates, to obtain a
characterization (Theorem 4.1.2) of the Fraïssé fence by isolating a topological property
which yields the amalgamation property for F0.

Fences, some of their properties, and the techniques we use, have analogs in the
theory of fans. A fan is an arcwise connected and hereditarily unicoherent compact
space that has at most one ramification point. A fan with ramification point t is
smooth if for any sequence (xn)n∈N converging to x, the sequence ([t, xn])n∈N of arcs
connecting t to xn converges to [t, x]. Smooth fans were introduced in [Cha67] and
have been extensively studied in continuum theory. A Lelek fan is a smooth fan with a
dense set of endpoints. Such a fan was first constructed in [Lel60] and was later proved
to be unique up to homeomorphism in [BO90] and [Cha89].

In the series of papers [BK15, BK17, BK19], Bartošová and Kwiatkowska study
the Lelek fan, and the dynamics of its homeomorphism group, via projective Fraïssé
theory. By proving a novel structural Ramsey theorem and dualizing the methods
from [KPT05], they prove that the UMF of its homeomorphisms group is metrizable
and characterize it as the subspace of connected maximal chains of closed sets of the
Lelek fan whose base point is the ramification point of the fan.
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Besides the fact that both can be obtained as quotients of projective Fraïssé limits
of some class of ordered structures, the Fraïssé fence and the Lelek fan share several
other features:

• Both are as homogeneous as possible, namely they are 1/3-homogeneous (see
[AHPJ17] for the Lelek fan and Corollary 4.2.6 for the Fraïssé fence).

• Both are universal in the respective classes with respect to embeddings that
preserve endpoints (see [DvM10] for the Lelek fan and Theorem 4.3.1 for the
Fraïssé fence).

• For both, the set of endpoints is dense (see Proposition 4.4.4 for the Fraïssé
fence). In fact, the Lelek fan is defined as the unique smooth fan with a dense set
of endpoints; the Fraïssé fence too has a characterization in terms of denseness
of endpoints (see Theorem 4.1.2).

• The set of endpoints of the Lelek fan is homeomorphic to the complete Erdős
space ([KOT96]), a homogeneous, almost zero-dimensional, 1-dimensional space;
the complete Erdős space is cohesive, that is, every point has a neighborhood
which does not contain any nonempty clopen subset. Among the subspaces of
the set of endpoints of the Fraïssé fence there is a homogeneous, almost zero-
dimensional, 1-dimensional space M which is not cohesive (Theorem 4.4.7(iv)).

A space with the properties mentioned for M was constructed in [Dij06] as a counterex-
ample to a question by Dijkstra and van Mill. This raises the question of whether the
two examples are homeomorphic and whether they can be regarded as a non-cohesive
analog of the complete Erdős space.

We conclude Chapter 4 by studying some dynamical properties of the Fraïssé fence,
namely approximate projective homogeneity and the existence of a dense conjugacy
class. Questions regarding the UMF of its group of automorphisms are left for further
research.

Chapter 1 contains notions and results which are of use for the rest of the disserta-
tion. Chapter 2 is independent of Chapters 3 and 4, which should be read sequentially.
A good reference for basic model theory is [EFT94], one for general topology is [Eng89],
and for descriptive set theory [Kec95].

Notation and conventions

Throughout this thesis, by order we mean partial order. We specify total (or linear)
when needed. Given an order (A,≤) on a set A, a chain is a subset of A which is linearly
ordered by ≤. A chain is maximal if it cannot be properly extended to a chain.
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Let X be a topological space. If A is a subset of X, then intX(A), clX(A), ∂X(A)

denote the interior, closure, and boundary of A in X, respectively. We drop the sub-
script whenever the ambient space is clear from context. A closed set is regular if it
coincides with the closure of its interior. We denote by K(X) = {K ⊆ X | K compact}
the space of compact subsets of X, with the Vietoris topology. This is the topology
generated by the sets {K ∈ K(X) | K ⊆ O} and {K ∈ K(X) | ∀i < n K ∩ Oi 6= ∅},
for n ∈ N and O,O0, . . . , On−1 varying among the open subsets of X. If X is compact
metrizable, so is K(X). Let Homeo(X) denote the group of homeomorphisms of X,
which we endow with the compact-open topology. This is the topology whose basic
open sets are {f ∈ Homeo(X) | f [K] ⊆ O}, for K ranging among compact subsets of X
and O among the open ones. If X is compact and d is a metric on X, then dsup(f, g) =

supx∈X d(f(x), g(x)) is a metric on Homeo(X). If f : X → Y is a function and n ∈ N,
we denote by f (n) : Xn → Y n the map (x0, . . . , xn−1) 7→ (f(x0), . . . , f(xn−1)). By
mesh of a covering of a metric space, we indicate the supremum of the diameters of its
elements. When we talk about dimension, we mean the inductive dimension.

We collect here the definitions of some basic topological concepts we need.

• A space is almost zero-dimensional if each point has a neighborhood basis con-
sisting of closed sets that are intersection of clopen sets.

• A space is strongly σ-complete if it is the union of countably many closed and
completely metrizable subspaces.

• A space is X cohesive if each point has a neighborhood which does not contain
any nonempty clopen subset of X.

• The quasi-component of a point is the intersection of all its clopen neighborhoods.
A space is totally separated if the quasi-component of each point is a singleton.

• A space is n-homogeneous if for every two sets of n points there is a homeomor-
phism sending one onto the other. It is ω-homogeneous if it is n-homogeneous for
each n > 0.

• A space X is 1/n-homogeneous if the action of Homeo(X) on X has exactly n

orbits.

• A space is h-homogeneous if it is homeomorphic to each of its nonempty clopen
subsets.
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Chapter 1

Projective Fraïssé theory

1.1 Compact metrizable structures

Let a relational first order language L be given. A compact metrizable L-structure 1

is a compact metrizable space that is also an L-structure such that the interpretations
of the relation symbols are closed sets. In particular, the topology on finite topological
L-structures is discrete. We will usually suppress the words “compact metrizable” when
referring to finite compact metrizable L-structures.

An epimorphism between compact metrizable L-structures A,B is a continuous
surjection ϕ : A → B such that rB = ϕ(n)[rA], for every n-ary relation symbol r ∈ L.
Notice that epimorphisms are closed, since the domain is compact. An isomorphism is
a bijective epimorphism, so in particular it is a homeomorphism between the supports.
An isomorphism of A onto A is an automorphism and we denote by Aut(A) the group
of automorphisms of A, with the topology inherited by Homeo(A). An epimorphism
ϕ : A → B refines a covering U of A if the preimage of any point of B is included
in some element of U . If G,G′ are families of compact metrizable structures such that
G′ ⊆ G and for all A ∈ G there exist B ∈ G′ and an epimorphism ϕ : B → A, we say
that G′ is cofinal in G.

A family G of compact metrizable L-structures is a projective Fraïssé family if the
following properties hold:

(JPP) (joint projection property) for every A,B ∈ G there are C ∈ G and epimorphisms
C → A, C → B;

(AP) (amalgamation property) for every A,B,C ∈ G and epimorphisms ϕ1 : B → A,
ϕ2 : C → A there are D ∈ G and epimorphisms ψ1 : D → B, ψ2 : D → C such
that ϕ1ψ1 = ϕ2ψ2.

1Compact metrizable structures were first defined in [RZ18]. In [IS06], where projective Fraïssé
limits were introduced, the theory was developed for topological L-structures, which in our notation
are zero-dimensional compact metrizable L-structures.
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Given a family G of compact metrizable L-structures, a zero-dimensional compact
metrizable L-structure L is a projective Fraïssé limit of G if the following hold:

(L1) (projective universality) for every A ∈ G there is some epimorphism L→ A;

(L2) for any clopen covering U of L there are A ∈ G and an epimorphism L → A

refining U ;

(L3) (projective ultrahomogeneity) for every A ∈ G and epimorphisms ϕ1, ϕ2 : L→ A

there exists an automorphism ψ ∈ Aut(L) such that ϕ2 = ϕ1ψ.

Note that in the original definition of a projective Fraïssé limit in [IS06] item (L2)
was replaced by a different but equivalent property.

If G is a projective Fraïssé family of finite L-structures and L satisfies (L1) and
(L2), then (L3) holds if and only if the following extension property holds:

(L3′) for any A,B ∈ G and epimorphisms ϕ : B → A, ψ : L → A there exists an
epimorphism χ : L→ B such that ϕχ = ψ.

The proof is the same as in [Pan16, Lemma 3].
In [IS06] it is proved that every nonempty, at most countable (up to isomorphism),

projective Fraïssé family of finite L-structures has a projective Fraïssé limit, which is
unique up to isomorphism.

If G is a class of compact metrizable L-structures, a projective sequence in G is a
sequence (An, ϕ

m
n )n∈N,m≥n, where:

• An ∈ G;

• ϕn+1
n : An+1 → An is an epimorphism, for each n ∈ N;

• ϕmn = ϕn+1
n · · ·ϕmm−1 : Am → An for n < m, and ϕnn : An → An is the identity.

A projective limit for such a sequence is a compact metrizable L-structure A, whose
universe is A = {u ∈

∏
n∈NAn | ∀n ∈ N u(n) = ϕn+1

n (u(n + 1))} and such that
rA(u0, . . . , uj−1) ⇔ ∀n ∈ N rAn(u0(n), . . . , uj−1(n)), for every j-ary relation symbol
r ∈ L. We denote by ϕn : A → An the n-th projection map: this is an epimorphism.
Notice that the projective limit of a sequence of finite L-structures is zero-dimensional.

A fundamental sequence for G is a projective sequence (An, ϕ
m
n ) such that the

following properties hold:

(F1) {An}n∈N is cofinal in G;

(F2) for any n, any A,B ∈ G and any epimorphisms θ1 : B → A, θ2 : An → A, there
exist m ≥ n and an epimorphism ψ : Am → B such that θ1ψ = θ2ϕ

m
n .

To study projective Fraïssé limits it is enough to consider fundamental sequences, due
to the following fact whose details can be found in [Cam10].

8



Proposition 1.1.1. Let G be a nonempty, at most countable (up to isomorphism)
family of finite L-structures and G0 be cofinal in G. Then the following are equivalent.

1. G is a projective Fraïssé family;

2. G has a projective Fraïssé limit;

3. G has a fundamental sequence.

Moreover, in this case G0 is a projective Fraïssé family and the projective Fraïssé limits
of G0,G, and of its fundamental sequence coincide. A projective Fraïssé limit for them
is the projective limit of the fundamental sequence.

If G is a projective Fraïssé family, one can check whether a given projective sequence
is fundamental for G with the following.

Proposition 1.1.2. Let G be a projective Fraïssé family of compact metrizable L-
structures. Let (An, ϕ

m
n ) be a projective sequence in G. Assume that for each A ∈ G,

n ∈ N, and epimorphism θ : A → An, there exist m ≥ n and an epimorphism ψ :

Am → A such that θψ = ϕmn . Then (An, ϕ
m
n ) is a fundamental sequence for G.

Proof. (F1) Let A ∈ G, by (JPP) there exist A′ ∈ G, and epimorphisms ϕ : A′ → A

and ϕ′ : A′ → A0. By hypothesis there are n and an epimorphism θ : An → A′ such
that ϕ′θ = ϕn0 . Then ϕθ is an epimorphism An → A, as wished.

(F2) Let A,B ∈ G and epimorphisms θ1 : B → A, θ2 : An → A. By (AP) there
exist C ∈ G and epimorphisms ρ1 : C → B and ρ2 : C → An such that θ1ρ1 = θ2ρ2. By
hypothesis, there exist m ≥ n and an epimorphism ψ′ : Am → C such that ρ2ψ′ = ϕmn .
Then ψ = ρ1ψ

′ : Am → B is such that θ1ψ = θ2ϕ
m
n .

Notice that the converse of Proposition 1.1.2 holds as well.

1.2 Fine projective sequences

In the sequel, whenever we denote a language with a subscript, like in LR , we mean
that the language contains a distinguished binary relation symbol represented in the
subscript. The interpretation of R in a compact metrizable LR-structure is expected
to be reflexive and symmetric. These properties are preserved under projective limits.
A compact metrizable LR-structure A in which the interpretation of R is the identity
is called an LR-quotient. An LR-prespace is any zero dimensional compact metrizable
LR-structure A in which the interpretation of R is transitive, that is, an equivalence
relation. In such case, let p : A → A/RA denote the quotient map, and let A/RA be
endowed with the LR-structure where rA/RA

= p(n)(rA), for any r ∈ LR \ {R} of arity
n, and RA/RA is the identity. Since RA is a closed equivalence relation, p is a closed
map, and therefore each rA/RA is also closed, so A/RA is a LR-quotient and p is an
epimorphism. In this case, we say that A is a prespace of A/RA .
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Remark 1.2.1. In the above setting, let α ∈ Aut(A) be an automorphism of the pres-
pace. Then there is a unique α∗ ∈ Aut(A/RA ) such that pα = α∗p. The map
p∗ : Aut(A) → Aut(A/RA ) which sends α to α∗ is a continuous homomorphism of
topological groups. As we see in Section 1.3, if p is irreducible, then p∗ is an embed-
ding. Particular relevance in the literature is given to the case in which p∗ has dense
image. Indeed, in this case it is possible to transfer some results regarding the dynamics
of A to corresponding results for A/RA , see Corollary 4.5.5 or [BK19, Theorem 5.3],
for example.

Definition 1.2.2. A projective sequence (An, ϕ
m
n ) of finite LR-structures and epi-

morphisms is fine whenever its projective limit is an LR-prespace. If (An, ϕ
m
n ) is a

fine projective sequence in LR with projective limit A and X is a compact metrizable
LR-quotient isomorphic to A/RA , we say that (An, ϕ

m
n ) approximates X.

Given a reflexive graph (that is, a reflexive and symmetric relation) R on some set,
denote by dR the distance on the graph, where dR(a, b) = ∞ if a, b belong to distinct
connected components of the graph. Note that if R,S are reflexive graphs and ϕ is a
function between them such that x R y ⇒ ϕ(x) S ϕ(y) for all x, y, then the inequality
dS(ϕ(x), ϕ(y)) ≤ dR(x, y) holds for every x, y.

We can determine whether a sequence is fine by checking that the R-distance of
points which are not R-related tends to infinity. More precisely:

Lemma 1.2.3. Let (An, ϕ
m
n ) be a projective sequence of finite LR-structures, with

projective limit A. Assume that RAn is reflexive and symmetric for every n ∈ N. The
projective sequence is fine if and only if for all n ∈ N and a, b ∈ An with dRAn (a, b) = 2,
there is m > n such that if a′ ∈ (ϕmn )−1(a), b′ ∈ (ϕmn )−1(b) then dRAm (a′, b′) ≥ 3.

Proof. Let a, b ∈ An with dRAn (a, b) = 2, say a RAn c RAn b. If for each m > n there
are am ∈ (ϕmn )−1(a), bm ∈ (ϕmn )−1(b) with dRAm (am, bm) = 2, say am RAm cm RAm bm,
let

xm ∈ ϕ−1m (am), ym ∈ ϕ−1m (bm), zm, z
′
m ∈ ϕ−1m (cm),

with xm RA zm, z
′
m RA ym. Passing to a suitable subsequence, let

x = lim
h→∞

xmh
, y = lim

h→∞
ymh

, z = lim
h→∞

zmh
= lim

h→∞
z′mh

,

so that xRA z RA y. However, x, y are not RA-related (otherwise aRAn b), so (An, ϕ
m
n )

is not fine.
On the other hand, if (An, ϕ

m
n ) is not fine there are x, y ∈ A such that dRA(x, y) =

2, say x RA z RA y, for x, y, z distinct points. There is n ∈ N such that for all
m ≥ n the points ϕm(x), ϕm(y), ϕm(z) are distinct and (ϕm(x), ϕm(y)) 6∈ RAm , so
dRAm (ϕm(x), ϕm(y)) = 2. Therefore the property does not hold for ϕn(x), ϕn(y).
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Definition 1.2.4. Let A be a compact metrizable LR-structure and B ⊆ A. We say
B is R-connected if for any two clopen sets U,U ′ ⊆ A such that U ∩B,U ′∩B partition
B, there are x ∈ U ∩B, x′ ∈ U ′ ∩B such that x RA x′.

Notice that if A is a finite LR-structure, R-connectedness coincides with the usual
notion of connectedness for the graph RA, and if A is a LR-quotient, it is the usual
topological connectedness.

Lemma 1.2.5. Let ϕ : A′ → A be an epimorphism between compact metrizable LR-
structures. Then the image ϕ[B] of a closed R-connected subset B ⊆ A′ is closed and
R-connected.

Proof. The set ϕ[B] is closed as ϕ is a closed map. Suppose that U,U ′ are clopen
subsets of A such that U ∩ ϕ[B], U ′ ∩ ϕ[B] partition ϕ[B]. Then ϕ−1(U), ϕ−1(U ′) are
clopen subsets of A′ such that ϕ−1(U)∩B,ϕ−1(U ′)∩B partition B. By the assumption,
there are u ∈ ϕ−1(U)∩B, u′ ∈ ϕ−1(U ′)∩B with uRA′u′, and since ϕ is an epimorphism,
ϕ(u)RA ϕ(u′). So ϕ[B] is R-connected.

Definition 1.2.6. Let A be a finite LR-structure and C be a cover of a compact
metrizable LR-quotient X. We say that C is A-like whenever there is a bijection
between A and C, denoted by a 7→ Ca, such that:

(A0) for each a ∈ A, Ca \
⋃
a′ 6=aCa′ 6= ∅;

(A1) a RA a′ if and only if Ca ∩ Ca′ 6= ∅;

(A2) for r ∈ LR \ {R} of arity n, if (x0, . . . , xn−1) ∈ rX , then there is (a0, . . . , an−1) ∈
rA such that xi ∈ Cai , for each i < n;

(A3) for r ∈ LR \ {R} of arity n, if (a0, . . . , an−1) ∈ rA, then there is (x0, . . . , xn−1) ∈
rX such that

xi ∈ Cai \
⋃
a6=ai

Ca,

for each i < n.

If G is a family of finite LR-structures we say that a cover C of X is G-like if there is
A ∈ G such that C is A-like.

We often treat a G-like cover as an element of G, by endowing it with the discrete
topology and the LR-structure which makes a 7→ Ca an isomorphism.

Lemma 1.2.7. Let X ′, X be compact metrizable LR-quotients, ϕ : X ′ → X be an
epimorphism, and A be a finite LR-structure. If C is an A-like cover of X, then ϕ−1C =

{ϕ−1(Ca) | a ∈ A} is an A-like cover of X ′.
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Proof. Properties (A0), (A1) hold by surjectivity.
Fix r ∈ LR \ {R} of arity n. If (x′0, . . . , x

′
n−1) ∈ rX

′ , then ϕ(n)(x′0, . . . , x
′
n−1) ∈ rX ,

so there are (a0, . . . , an−1) ∈ rA such that ϕ(x′i) ∈ Cai , that is, x′i ∈ ϕ−1(Cai), for each
i < n. This takes care of (A2).

To check that (A3) holds, let (a0, . . . , an−1) ∈ rA. Then there is (x0, . . . , xn−1) ∈ rX

such that xi ∈ Cai \
⋃
a6=ai Ca, for each i < n. Since ϕ is an epimorphism, there is

(x′0, . . . , x
′
n−1) ∈ rX

′ such that ϕ(x′i) = xi, for i < n. It follows that x′0 ∈ ϕ−1(Cai) \⋃
a6=ai ϕ

−1(Ca).

For the remainder of the section we fix a fine projective sequence of finite LR-
structures (An, ϕ

m
n ) with projective limit A and with quotient map p : A→ A/RA .

If ϕ : A→ A is an epimorphism onto a finite LR-structure A and a ∈ A, we let

JaKϕ = p
[
ϕ−1(a)

]
, JAKϕ = {JaKϕ | a ∈ A}.

Remark 1.2.8. Notice that the cover JAKϕ of A/RA is not necessarily A-like, because
(A0), (A3) may fail. In Section 1.3 we give conditions under which they hold.

Lemma 1.2.9.

1. The mesh of the sequence
(
{ϕ−1n (a) | a ∈ An}

)
n∈N tends to 0. In particular, the

sets ϕ−1n (a) for n ∈ N, a ∈ An form a basis for the topology of A.

2. The mesh of the sequence
(
JAnKϕn

)
n∈N

tends to 0.

Proof. (1) Suppose that there is ε > 0 such that for infinitely many n ∈ N, there is
an ∈ An with diam(ϕ−1n (an)) ≥ ε. Consider the forest T = {ϕnn′(an) | n′ < n}, so that
diam(ϕ−1n (b)) ≥ ε for every b in the forest, if b ∈ An. Let u = (b0, b1, . . .) ∈ A be an
infinite branch in T . Since

n < n′ ⇒ ϕ−1n′ (bn′) ⊆ ϕ−1n (bn)

it follows that the sequence ϕ−1n (bn) converges in K(A/RA ) to K =
⋂
n∈N ϕ

−1
n (bn) with

diam(K) ≥ ε. But
⋂
n∈N ϕ

−1
n (bn) = {u}, a contradiction.

(2) By (1) and the fact that function p is uniformly continuous.

Lemma 1.2.10. If Bn ⊆ An, for n ∈ N, are R-connected subsets and (ϕ−1n (Bn))n∈N

converges in K(A) to K, then K is R-connected.

Proof. Let U,U ′ be clopen, nonempty subsets of A, with some positive distance δ, such
that U∩K,U ′∩K partitionK. Consider the open neighborhood O = {C ∈ K(A) | C ⊆
U∪U ′, C∩U 6= ∅, C∩U ′ 6= ∅} of K in K(A). Let n ∈ N be such that ϕ−1n (Bn) ∈ O, and
diam(ϕ−1n (a)) < δ for each a ∈ An: such a n exists by Lemma 1.2.9. Then each ϕ−1n (a)
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for a ∈ Bn is either contained in U or in U ′, as the distance between the two clopen sets
is greater than its diameter, and U,U ′ each contain at least one such set, since ϕ−1n (Bn)

has nonempty intersection with both U and U ′. It follows that ϕn[U ]∩Bn, ϕn[U ′]∩Bn
partition Bn. But Bn is R-connected, so there are a ∈ Bn ∩ ϕn[U ], a′ ∈ Bn ∩ ϕn[U ′]

such that a RAn a′, and thus there exist x ∈ ϕ−1n (a) ⊆ U, x′ ∈ ϕ−1n (a′) ⊆ U ′ such that
x RA x′. So K is R-connected.

Corollary 1.2.11. If Bn ⊆ An are R-connected subsets and (
⋃
a∈Bn

JaKϕn
)n∈N con-

verges in K(A/RA ) to some K, then K is connected.

Proof. Let nk be an increasing sequence of natural numbers such that ϕ−1nk
(Bnk

) con-
verges in K(A), say limk→∞ ϕ

−1
nk

(Bnk
) = L. Then

lim
n→∞

⋃
a∈Bn

JaKϕn
= lim

n→∞
p
[
ϕ−1n (Bn)

]
= lim

k→∞
p
[
ϕ−1nk

(Bnk
)
]

= p[L],

whence K = p[L]. Now apply Lemmas 1.2.5 and 1.2.10.

1.3 Irreducible functions and regular quasi-partitions

Given topological spaces X, Y , a continuous map f : X → Y is irreducible if
f [K] 6= Y for all proper closed subsets K ⊂ X.

We recall some basic results on irreducible closed surjective maps between compact
metrizable spaces 2, whose proofs can be found in [AP84]. Let f : X → Y be such a
map. Given A ⊆ X, let f#(A) = {y ∈ Y | f−1(y) ⊆ A}. If O ⊆ Y is an open set,
then f#(O) is open and f−1(f#(O)) is dense in O. If C ⊆ X is a regular closed set,
then C = cl(f−1(f#(int(C)))), and f [C] = cl(f#(int(C))), so in particular the image
of a regular closed set is regular. The preimage of any point by f is either an isolated
point or has empty interior. If C,C ′ are regular closed and f [C] = f [C ′] then C = C ′;
if int(C ∩ C ′) = ∅ then int(f [C] ∩ f [C ′]) = ∅.

Definition 1.3.1. A covering C of a topological space is a regular quasi-partition if the
elements of C are nonempty, regular closed sets and ∀C,C ′ ∈ C (C 6= C ′ ⇒ C ∩ C ′ ⊆
∂(C) ∩ ∂(C ′)).

Remark 1.3.2. If C is a regular quasi-partition, then C \
⋃
C′ 6=C C

′ = intC 6= ∅. It
follows that if C′ is a regular quasi-partition which refines C, then for each C ′ ∈ C′ there
is a unique C ∈ C such that C ′ ⊆ C. On the other hand, for each C ∈ C, there is
C ′ ∈ C′, C ′ ⊆ C. The refinement therefore gives rise to a surjective function C′ → C.

Lemma 1.3.3. If X,Y are compact metrizable spaces and f : X → Y is an irreducible
closed surjective map, then the image fC = {f [C] | C ∈ C} of a regular quasi-partition
C of X is a regular quasi-partition of Y , and the map C 7→ f [C] is a bijection between
C and fC.

2in this context the notions of irreducible, almost 1-to-1, and highly proximal coincide.
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Proof. The fact that C 7→ f [C] is a bijection is one of the basic properties of irreducible
closed surjective maps between compact metrizable spaces. The same for the fact that
each f [C] is a regular closed set.

Assume now that C,C ′ ∈ C, and let x ∈ f [C] ∩ f [C ′]. We show that x /∈ int(f [C]),
similarly x /∈ int(f [C ′]). If toward contradiction x ∈ int(f [C]), let O be open with
x ∈ O ⊆ f [C]. Since x ∈ f [C ′] and f [C ′] is regular closed, there is y ∈ O ∩ int(f [C ′]),
so that there exists an open set V with y ∈ V ⊆ f [C]∩f [C ′]. It follows that int(f [C]∩
f [C ′]) 6= ∅, whence int(C ∩ C ′) 6= ∅ and then int(C) ∩ int(C ′) 6= ∅, against C being a
regular quasi-partition.

Fix again a fine projective sequence of finite LR-structures (An, ϕ
m
n ) with projective

limit A and with quotient map p : A→ A/RA .

Lemma 1.3.4. The following are equivalent:

1. The set of points of A whose RA-equivalence class is a singleton is dense.

2. For each n ∈ N and a ∈ An there are m > n and b ∈ Am such that if b′ RAm b

then ϕmn (b′) = a.

3. The quotient map p : A→ A/RA is irreducible.

Proof. Let M denote the set of points of A whose RA-equivalence class is a singleton.
(1) ⇒ (3). Let K ⊂ A be a proper closed subset. Then there is x ∈ M \K, so that
p(x) /∈ p[K]. Thus p is irreducible.

(3)⇒ (2). Let n ∈ N and a ∈ An. By irreducibility of p,

O = p−1(p#(ϕ−1n (a))) = {x ∈ A | [x]RA ⊆ ϕ−1n (a)}

is an open, nonempty, and RA-invariant set contained in ϕ−1n (a). Letm > n and b ∈ Am
be such that ϕ−1m (b) ⊆ O, which exist since such sets are a basis for the topology on A.
If b′ RAm b, there are x ∈ ϕ−1m (b), x′ ∈ ϕ−1m (b′) such that x RA x′. But x ∈ ϕ−1m (b) ⊆ O,
which is RA-invariant, so also x′ ∈ O. It follows that ϕn(x′) = a and thus ϕmn (b′) = a,
for ϕn = ϕmn ϕm.

(2)⇒ (1). Since {ϕ−1n (a) | n ∈ N, a ∈ An} is a basis for the topology on A it suffices
to fix n ∈ N and a ∈ An and prove that there is x ∈M with ϕn(x) = a. We construct a
sequence ni and elements bi ∈ Ani by induction. Let n0 = n and b0 = a. Given bi ∈ Ani ,
by hypothesis there are m > ni and b ∈ Am such that whenever b′RAm b it follows that
ϕmni

(b′) = bi. Set ni+1 = m and bi+1 = b. Thus ϕni+1
ni (bi+1) = bi for each i, so there

exists x ∈ A such that ϕni(x) = bi, for each i ∈ N. In particular ϕn(x) = a. Let yRAx;
if towards contradiction y 6= x then there is i ∈ N such that ϕni(y) 6= ϕni(x) = bi.
But ϕni+1(y) RAni+1 ϕni+1(x) = bi+1, so ϕ

ni+1
ni ϕni+1(y) = ϕni(y) = bi by construction

of bi+1, a contradiction.
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Prespaces whose quotient map is irreducible are central enough to our work that
they merit a name.

Definition 1.3.5. If the quotient map p : A→ A/RA is irreducible and X is a compact
metrizable LR-structure isomorphic to A/RA we say that (An, ϕ

m
n ) approximates X

closely, and that A is a close LR-prespace.

Remark 1.3.6. In the above setting the homomorphism p∗ : Aut(A) → Aut(A/RA )

induced by the quotient map is an embedding. Indeed, it is enough to show that if
α ∈ Aut(A) is not the identity, then neither is α∗. So let U ⊆ A be a clopen set such
that α[U ] ∩ U = ∅. Since p is irreducible, p[U ], p[α[U ]] are regular closed sets whose
intersection has empty interior. But p[α[U ]] = α∗[p[U ]], so α∗ is not the identity.

By Lemma 1.3.3 we have the following.

Proposition 1.3.7. If A is a close LR-prespace, then JAKϕ is a regular quasi-partition
of A/RA and the function

a ∈ A 7→ JaKϕ ∈ JAKϕ

is a bijection.

Lemma 1.3.8. Suppose that A is a close LR-prespace. For every n ∈ N, a ∈ An,

∂(JaKϕn
) = {x ∈ JaKϕn

| ∃a′ 6= a, a′ RAn a, x ∈
q
a′

y
ϕn
} =

{x ∈ JaKϕn
| ∃a′ 6= a, x ∈

q
a′

y
ϕn
}.

Moreover, if p is at most 2-to-1 then for each x there are at most two a ∈ An such that
x ∈ JaKϕn

.

Proof. Let x ∈ ∂(JaKϕn
), so that x = p(u) for some u ∈ ϕ−1n (a). As each Ja′Kϕn

is
closed, this implies that there exists a′ ∈ An, a′ 6= a such that x ∈ Ja′Kϕn

, so that there
is v ∈ ϕ−1n (a′) with u RA v; in turns, this entails that a RAn a′.

Let now x ∈ JaKϕn
, and assume that there exists a′ ∈ An, with a′ 6= a, x ∈ Ja′Kϕn

.
Since JaKϕn

∩ Ja′Kϕn
⊆ ∂(JaKϕn

) ∩ ∂(Ja′Kϕn
), it follows that x ∈ ∂(JaKϕn

).
The last statement is a direct consequence of the definition of JaKϕn

.

1.4 Suitable sequences

Definition 1.4.1. Let X be a compact metrizable LR-quotient, G be a family of finite
LR-structures, and (Cn)n∈N be a sequence of covers of X. We say that (Cn)n∈N is a
G-suitable sequence of X if each Cn is a G-like regular quasi-partition, Cn+1 refines Cn
for each n, and the mesh of Cn tends to 0.

The following is a combinatorial criterion which a fine sequence (An, ϕ
m
n ) of finite

LR-structures with limit A has to satisfy in order to give rise to a suitable sequence of
A/RA .
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Proposition 1.4.2. Suppose that for each r ∈ LR \ {R} of arity `, each n ∈ N and
(a0, . . . , a`−1) ∈ rAn, there are m > n and (b0, . . . , b`−1) ∈ rAm such that for each
i < `, whenever b′ RAm bi then ϕmn (b′) = ai. Then for each n ∈ N, JAnKϕn

is a cover
of A/RA which satisfies (A3) with respect to An. If furthermore A is a close prespace,
then JAnKϕn

is An-like, and (JAnKϕn
)n∈N is a {An | n ∈ N}-suitable sequence of regular

quasi-partitions.

Proof. Fix n ∈ N and let (a0, . . . , a`−1) ∈ rAn . By hypothesis there are m > n and
(b0, . . . , b`−1) ∈ rAm such that for each i < `, whenever b′ RAm bi then ϕmn (b′) = ai.
It follows that if u ∈ ϕ−1m (bi) and u′ RA u, then ϕm(u′) = bi, so JbiKϕm

⊆ JaiKϕn
\⋃

a6=aiJaKϕn
, for i < `. Since ϕm is an epimorphism there is (u0, . . . , u`−1) ∈ rA such

that ϕm(ui) = bi, for each i < `, so (A3) holds.
The rest of the proof follows from Lemma 1.2.9 and Proposition 1.3.7.

We show, conversely, that each G-suitable sequence gives rise to a fine a projective
sequence of G-structures.

Proposition 1.4.3. Let X be a compact metrizable LR-quotient, G be a family of
finite LR-structures, and (Cn)n∈N be a G-suitable sequence of X. For each m ≥ n, let
χmn : Cm → Cn be the inclusion map, that is, χmn (C) = C ′ if and only if C ⊆ C ′. Then
(Cn, χmn ) is a fine projective sequence of structures from G closely approximating X such
that JCKχn

= C, for any n ∈ N, C ∈ Cn.

Proof. We prove that each χmn is an epimorphism. By Remark 1.3.2 it is a surjective
function. If C,C ′ ∈ Cm are such that C RCm C ′, then C ∩ C ′ 6= ∅, so that χmn (C) ∩
χmn (C ′) 6= ∅ and then χmn (C) RCn χmn (C ′). If C,C ′ ∈ Cn are such that C RCn C ′, then
C∩C ′ 6= ∅, so let x ∈ C∩C ′. Since, by the regularity of C,C ′, point x is in the closure of
the interior both of C and C ′, there are D,D′ ∈ Cm such that x ∈ D ⊆ C, x ∈ D′ ⊆ C ′,
so that D RCm D′.

Now let r ∈ LR\{R} be of arity `. Assume C0, . . . , C`−1 ∈ Cm, with (C0, . . . , C`−1) ∈
rCm . By (A3), there is (x0, . . . , x`−1) ∈ rX such that xi ∈ int(Ci), for each i < `. Then
xi ∈ int(χmn (Ci)), for i < `, so (χmn (C0), . . . , χ

m
n (C`−1)) ∈ rCn by (A2).

Finally, assume that C0, . . . , C`−1 ∈ Cn, with (C0, . . . , C`−1) ∈ rCn . By (A3) there
is (x0, . . . , x`−1) ∈ rX such that xi ∈ int(Ci), for each i < `. By (A2) there is
(C ′0, . . . , C

′
`−1) ∈ rCm with xi ∈ C ′i, for i < `. Fix i < `. Since xi ∈ int(Ci) ∩ C ′i,

and Cm, Cn are regular quasi-partitions, it follows that C ′i ⊆ Ci, that is, χmn (C ′i) = Ci.
We prove that the sequence is fine. Let X be the projective limit of (Cn, χmn ).

Relation RX is reflexive and symmetric, as all RCn are. Since the mesh of (Cn) tends
to 0, Lemma 1.2.3 allows to conclude that the sequence is fine.

To check that the quotient map p : X→ X/RX is irreducible, we apply Lemma 1.3.4
by showing that given n ∈ N, D ∈ Cn, the set χ−1n (D) contains a point whose RX-
equivalence class is a singleton. Since Q =

⋂
m∈N

⋃
C∈Cm int(C) is dense in Y , let
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x ∈ Q ∩ D; then for each m there is exactly one Cm ∈ Cm to which x belongs, so
p−1(x) = {(Cm)m∈N} is not RY-related to any other point and p−1(x) ∈ χ−1n (D).

Finally, we prove that X/RX is isomorphic to X. Since the mesh of the sequence
(Cn) tends to 0, the function q : X → X assigning to each u ∈ X the unique element
of
⋂
n∈N χn(u) is well defined, and q[χ−1n (C)] = C, for any n ∈ N and C ∈ Cn. It is

surjective since every member of Cn is covered by the members of Cn+1 contained in it,
and it is is continuous as the mesh of (Cn) goes to 0.

Let r ∈ LR \ {R} have arity `. If (u0, . . . , u`−1) ∈ rX then (χn(u0), . . . , χn(u`−1)) ∈
rCn , for all n ∈ N. It follows that for each n ∈ N, there are (xn0 , . . . , x

n
`−1) ∈ rX , with

xni ∈ int(χn(ui)), for i < `. By closure of rX , it follows that (q(u0), . . . , q(u`−1)) ∈ rX .
On the other hand, let (x0, . . . , x`−1) ∈ rX . By (A2), for each n ∈ N, there is

(Cn0 , . . . , C
n
`−1) ∈ rCn with xi ∈ Cni , for i < `. Since χn is an epimorphism, there

are (un0 , . . . , u
n
`−1) ∈ rX such that χn(uni ) = Cni , for i < `. Up to a subsequence(

(un0 , . . . , u
n
`−1)

)
n∈N converges to (u0, . . . , u`−1), which belongs to rX, by closure. Since

xi ∈ χn(uni ), for each n ∈ N, it follows that q(ui) = xi for each i < `. Therefore q is an
epimorphism.

It remains to show that q induces an isomorphism from X/RX to X. If u, v ∈ X
then:

q(u) = q(v)⇔ ∀n ∈ N χn(u) ∩ χn(v) 6= ∅ ⇔ u RX v,

so we are done.

Definition 1.4.4. If G is a family of finite LR-structures, we denote by JGK the class
of compact metrizable LR-quotients which admit a G-suitable sequence.

In general, JGK is a subclass of the LR-quotients which are approximated by fine
projective sequences from G, but in most concrete situations the two classes coincide,
see Theorem 3.4.3 or [IS06,BK15,PS18], for instance.
G-suitable sequences create a bridge between the topological properties of JGK and

the combinatorial properties of G. We exploit such bridge in Theorem 4.1.2, where we
translate the combinatorial condition of projective amalgamation to obtain a topolog-
ical characterization of the Fraïssé fence.

In many situations, the LR-quotients which admit G-suitable sequences can also be
understood by way of G-like open covers. One such case is when language LR is finite.

Lemma 1.4.5. Let G be a family of finite structures in a finite language LR, and let
X ∈ JGK. Then any open cover of X is refined by a G-like open cover.

Proof. Fix a compatible metric d on X. Let U be an open cover of X and let (Cn)n∈N

be a G-suitable sequence of X. Let δ be the the Lebesgue covering number for U .
By Lemma 1.2.9 there is n ∈ N be such that Cn has mesh less than δ/2. Say that
Cn = {Ca | a ∈ A} is A-like, for some A ∈ G. We show that we can enlarge the
elements of Cn by a sufficiently small amount such that A-likeness is preserved.
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For each a ∈ A, let xa ∈ Ca \
⋃
a′ 6=aCa′ be given by (A0) for Cn and let δ0 =

min
{
d
(
xa,
⋃
a′ 6=aCa′

) ∣∣∣ a ∈ A}. Let δ1 = min{d(Ca, Ca′) | a, a′ ∈ A,Ca ∩ Ca′ = ∅}.
Fix r ∈ LR \ {R} of arity `. For each a = (a0, . . . , a`−1) ∈ rA , fix (xa0 , . . . , x

a
`−1) ∈

rX , such that xai ∈ Cai \
⋃
a6=ai Ca, for i < `, which is given by (A3) for Cn. Let

δa = min
{
d
(
xai ,
⋃

a6=ai
Ca

) ∣∣∣ i < `
}
,

and δr = min{δa | a ∈ rA}. Let δ3 = min{δr | r ∈ LR \ {R}}, which exists since LR is
finite.

Finally, let ε < min{δ/2, δ0, δ1, δ3}. For each a ∈ A, let Va = {x ∈ X | d(x,Ca) <

ε}, and let V = {Va | a ∈ A}. Then V refines U , since its mesh is less than δ/2 + ε < δ.
It also holds that V is A-like: (A0) holds since ε < δ0; (A1) holds because ε < δ1, so
a RA a′ if and only if Va ∩ Va′ 6= ∅.

Fix r ∈ LR \ {R} of arity `. Property (A2) for r is immediate since Ca ⊆ Va

for each a ∈ A. So suppose a = (a0, . . . , a`−1) ∈ rA. Then (xa0 , . . . , x
a
`−1) ∈ rX and

xai ∈ Vai \
⋃
a6=ai Va, since ε < δ3 ≤ δr ≤ δa. Therefore (A3) holds.

Approximate projective homogeneity

When L is the projective Fraïssé limit of a projective Fraïssé family G of finite
LR-structures, it satisfies (L3) — projective ultrahomogeneity — with respect to G.
We establish conditions under which an approximate version of (L3) holds for L/RL

with respect to JGK.
Let L be an LR-prespace and G a family of finite LR-structures. We consider the

following property, reminiscent of (L2):

(SL2) For any A ∈ G and any A-like open cover U = {Ua | a ∈ A} of L/RL there is an
epimorphism ϕ : L→ A such that JaKϕ ⊆ Ua for each a ∈ A.

Theorem 1.4.6 (Approximate projective homogeneity). Let LR be finite and G be a
projective Fraïssé family of finite LR-structures with projective Fraïssé limit L. Suppose
that L is a prespace and that it satisfies (SL2). Then for any X ∈ JGK, epimorphisms
f0, f1 : L/RL → X, and any open cover V of X, there is α ∈ Aut(L) such that f0α∗ and
f1 are V-close, that is, for each x ∈ L/RL there is V ∈ V such that f0α∗(x), f1(x) ∈ V .

Proof. Let p : L → L/RL denote the quotient map. By Lemma 1.4.5 there are A ∈ G
and an A-like open cover V ′ = {Va | a ∈ A} of X refining V. Consider the open covers
f−1i V ′ = {f−1i (Va) | a ∈ A}, for i ≤ 1. By Lemma 1.2.7, these are A-like, so by (SL2)
there are epimorphisms ϕ0, ϕ1 : L→ A such that JaKϕi

⊆ f−1i (Va), for each a ∈ A and
i ≤ 1.

By (L3) there is α ∈ Aut(L) such that ϕ0α = ϕ1. Fix x ∈ L/RL and u ∈
p−1(x). Then f0α∗(x), f1(x) ∈ Vϕ1(u). Indeed, x ∈ JaKϕi

⊆ f−1i (Vϕi(u)), for i ≤ 1, so
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f1(x) ∈ Vϕ1(u). On the other hand, α∗(x) = pα(u) ∈ Jϕ1(u)Kϕ0
⊆ f−10 (Vϕ1(u)), so

f0α
∗(x) ∈ Vϕ1(u).

Corollary 1.4.7. Let LR be finite and G be a projective Fraïssé family of finite LR-
structures with projective Fraïssé limit L. Suppose that L is a prespace and that it
satisfies (SL2). If L/RL ∈ JGK, then Aut(L) embeds densely in Aut(L/RL ).

Proof. Let p : L → L/RL denote the quotient map. By Proposition 1.4.3, p is irre-
ducible and, by Remark 1.3.6, p∗ is an embedding.

Fix a compatible metric d on L/RL and consider the corresponding supremum
metric dsup on Aut(L/RL ). Let h ∈ Aut(L/RL ) and ε > 0. Let V be an open cover of
L/RL of mesh less than ε. We can thus apply Theorem 1.4.6 with f0 = idL/RL , f1 = h

to find α ∈ Aut(L) such that α∗, h are V-close, that is, such that dsup(α∗, h) < ε.

The condition that Aut(L) embeds densely in Aut(L/RL ) is of great importance
because it allows to pass some of the dynamical information of the prespace to the
quotient. For example, if the universal minimal flow of Aut(L) is metrizable, so is
Aut(L/RL ) ([BK19, Theorem 5.3]), and if Aut(L) has a dense conjugacy class, so does
Aut(L/RL ) (see Corollary 4.5.5).

It is therefore natural to ask the following question.

Question 1.4.8. Which compact metrizable structures are quotients of projective Fraïssé
limits such that the automorphisms of the prespace embed densely in those of the
quotient?

An answer to such question was provided by Panagiotopoulos in [Pan16], albeit in a
more expressive setting, which we explore in the next section. In Section 1.6 we instead
show that in the framework adopted in this dissertation there are indeed limitations.

1.5 A second order digression

In this section we are interested in relational languages (L,L2) with two sorts: the
first order sort L, and the second order sort L2. Elements of L are first order relational
symbols as in Section 1.1, whereas elements of L2 are second order relational symbols.
Let RC(A) denote the algebra of regular closed sets of A.

A compact metrizable (L,L2)-structure A is such that the restriction to L is a
compact metrizable L-structure and the interpretation SA of second order relational
symbol S ∈ L2 of arity n is a subset of RC(A)n.

If A,A′ are compact metrizable (L,L2)-structures, a map ϕ : A′ → A is an
epimorphism if it a continuous surjection such that rA = ϕ(n)[rA], for every n-ary
relation symbol r ∈ L, and such that (ϕ−1(C0), . . . , ϕ

−1(Cn−1)) ∈ SA
′ whenever

(C0, . . . , Cn−1) ∈ SA, for any n-ary second order relation symbol S ∈ L2.
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Remark 1.5.1. The definition is meaningful since the preimages of regular closed sets
are regular closed. Indeed, ϕ : A′ → A is a continuous map between compact spaces, so
in particular a closed map. Therefore preimage and closure commute, so the preimage
of the closure of an open set is the closure of the preimage of an open set. Since a
closed set is regular if and only if it is the closure of an open set, it follows that the
preimage of a regular closed set is regular.

If (An, ϕ
m
n ) is a projective sequence of (L,L2)-structures and epimorphisms, its

projective limit A is the (L,L2)-structure whose restriction to L is the projective limit
as defined in Section 1.1 and

SA =
⋃
n∈N

{(
ϕ−1n (C0), . . . , ϕ

−1
n (C`−1)

) ∣∣ (C0, . . . , C`−1) ∈ SAn
}
,

for any `-ary S ∈ L2.
If A is an (LR,L2)-prespace, and p : A → A/RA is the quotient map, we can

endow A/RA with a L2 structure by letting (C0, . . . , C`−1) ∈ SA/R
A if and only if(

ϕ−1(C0), . . . , ϕ
−1(C`−1)

)
∈ SA, for any `-ary S ∈ L2. It follows that p is an (LR,L2)-

epimorphism.

Remark 1.5.2. As has been noted before (see [BK19, Proposition 3.6]), projective
Fraïssé theory of zero dimensional compact metrizable structures can be understood
as the direct Fraïssé theory of Boolean algebras with additional structure, via Stone
duality. Indeed, let Clop(A) ⊆ RC(A) be the Boolean algebra of clopen subsets of A.
To any n-ary first order relation rA we can associate a relation SClop(A)

r ⊆ Clop(A)n

by letting (C0, . . . , Cn−1) ∈ SClop(A)
r if and only if there is (x0, . . . , xn−1) ∈ rA, with

xi ∈ Ci, for i < n. Then ϕ is an epimorphism if and only if C 7→ ϕ−1(C) is an embed-
ding of Boolean algebras with these additional relations. For a finite structure A, it
holds that Clop(A) = RC(A), so the second order relations on A introduced above cor-
respond exactly to first order relations on Clop(A), whereas first order relations on A
give rise to exactly those relations on Clop(A) which are generated by their restriction
to the atoms.

Some works in projective Fraïssé theory have considered classes of finite L-structures
with restricted epimorphisms, that is, where the class of relevant morphisms is a sub-
class of epimorphisms which contains the identities and is closed under composition.

This is the case in [PS18], in which the relevant morphisms are the connected
epimorphisms — those such that the preimage of an R-connected subset is R-connected.
It is clear, in this particular case, that the condition can be rephrased by adding a
unary second order predicate: that of being an R-connected subset. We show that this
is indeed the case more generally for all classes of restricted epimorphisms.

Lemma 1.5.3. Let G be a family of finite L-structures. Let Φ be a family of epimor-
phisms of G-structures which is closed under composition and such that idA ∈ Φ for
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each A ∈ G. Then there exist a second order language L2 and an expansion A∗ of each
A ∈ G to a (L,L2)-structure, such that ϕ : B → A is an (L,L2)-epimorphism from B∗

to A∗ if and only if ϕ ∈ Φ.

Proof. Let L2 = {SA | A ∈ G}, where SA is a second order relation symbol of arity |A|.
For each A ∈ G, fix an enumeration a0, . . . , a|A|−1 of A.

For each B ∈ G, let B∗ be the (L,L2)-structure whose restriction to L is B, and
such that:

SBA =
{(
ϕ−1(a0), . . . , ϕ

−1(a|A|−1)
) ∣∣ ϕ : B → A, ϕ ∈ Φ

}
,

for each A ∈ G.
If ϕ : B′ → B, ϕ ∈ Φ, and

(
C0, . . . , C|A|−1

)
∈ SBA , then there is an epimorphism

ψ : B → A, ψ ∈ Φ, such that
(
C0, . . . , C|A|−1

)
=
(
ψ−1(a0), . . . , ψ

−1(a|A|−1)
)
, so(

ϕ−1(C0), . . . , ϕ
−1(C|A|−1)

)
=
(
(ψϕ)−1(a0), . . . , (ψϕ)−1(a|A|−1)

)
∈ SB′A , since ψϕ ∈ Φ.

It follows that ϕ : B′∗ → B∗ is an (L,L2)-epimorphism.
On the other hand, if ϕ : B → A is an (L,L2)-epimorphism from B∗ to

A∗, then
(
ϕ−1(a0), . . . , ϕ

−1(a|A|−1)
)
∈ SBA , so there exists ψ ∈ Φ such that(

ϕ−1(a0), . . . , ϕ
−1(a|A|−1)

)
=
(
ψ−1(a0), . . . , ψ

−1(a|A|−1)
)
, that is, ψ = ϕ.

This framework also encompasses that of dual relations presented in [Pan16]. An
n-ary dual relation on A is a collection of clopen, ordered, n-partitions of A, that is, a
subset of Clop(A)n of elements (C0, . . . , Cn−1) such that {C0, . . . , Cn−1} is a partition
of A. These are a particular case of second order relations. Notice, for example, that
SBA defined in the proof of Lemma 1.5.3 is a dual relation.

We can therefore state the main result of [Pan16] in terms of second order relations.

Theorem 1.5.4 ( [Pan16, Theorem 5.2]). Let X be a compact metrizable space and G
a closed subgroup of Homeo(X). There is a two-sorted language ({R},L2), such that:

• X can be endowed with a ({R},L2)-quotient structure with cl(Aut(X)) = G;

• There is a projective Fraïssé family of finite ({R},L2)-structures, whose projective
Fraïssé limit L is a close prespace of X;

• The quotient map p : L→ X induces an embedding p∗ : Aut(L)→ G with dense
image.

The above theorem therefore provides an answer to Question 1.4.8, in the context
of second-order relations, or equivalently, restricted epimorphisms.

1.6 A negative result

In this section we show that a vast class of spaces, which includes closed manifolds of
dimension greater than 1 and the Hilbert cube [0, 1]N, is not amenable to being studied
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via (first order) projective Fraïssé theory, in the sense of Question 1.4.8. In particular,
it shows that Theorem 1.5.4 is not true in the context of first order languages.

Theorem 1.6.1. Let X be an infinite ω-homogeneous compact metrizable space with
an LR-quotient structure such that Aut(X) = Homeo(X). Suppose there is a projective
Fraïssé family G of finite LR-structures, whose projective Fraïssé limit L is a close
prespace of X. If the quotient map p : L → X induces an embedding p∗ : Aut(L) →
Homeo(X) with dense image, then X is the Cantor space.

Proof. Let (An, ϕ
m
n ) be a fundamental sequence in G. For any space Y and any

(x0, . . . , x`−1) ∈ Y `, let:

[(x0, . . . , x`−1)]id =
{(
x′0, . . . , x

′
`−1
)
∈ Y `

∣∣∣ ∀i, j < ` x′i = x′j iff xi = xj

}
.

Fix r ∈ LR \ {R} of arity `.
Claim 1.6.1.1. If (x0, . . . , x`−1) ∈ rX then [(x0, . . . , x`−1)]id ⊆ rX .

Proof. For each (x′0, . . . , x
′
`−1) ∈ [(x0, . . . , x`−1)]id, the bijection b mapping xi 7→ x′i for

each i < ` is well defined. Since X is `-homogeneous there is g ∈ Homeo(X) extending
b. Fix a compatible metric d on X and let dsup be the relative supremum metric on
Homeo(X). For any ε > 0, there is α ∈ Aut(L) such that dsup(α∗, g) < ε. In particular
d(α∗(xi), x

′
i) < ε for each i < `. But (α∗(x0), . . . , α

∗(x`−1)) ∈ rX as α∗ ∈ Aut(X), and
rX is closed, so (x′0, . . . , x

′
`−1) ∈ rX .

Suppose u ∈ L is an isolated point. Since p is irreducible, it is one-to-one on
u, so also p(u) is isolated. But X is infinite and 1-homogeneous, so it is perfect, a
contradiction. So L is perfect.

Claim 1.6.1.2. If (u0, . . . , u`−1) ∈ rL then [(u0, . . . , u`−1)]id ⊆ rL.

Proof. Fix a compatible metric d on L. Since p is irreducible, by Lemma 1.3.4, for
each ε > 0, there exists (v0, . . . , v`−1) ∈ [(u0, . . . , u`−1)]id such that d(ui, vi) < ε and p
is one-to-one on vi, for each i < `. Then p(`)(v0, . . . , v`−1) ∈

[
p(`)(u0, . . . , u`−1)

]
id

and
p(`)(u0, . . . , u`−1) ∈ rX , as p is an epimorphism. By Claim 1.6.1.1, p(`)(v0, . . . , v`−1) ∈
rX , but since p is one-to-one on vi, for i < `, it follows that (v0, . . . , v`−1) ∈ rL. We
conclude by closure of rL.

Claim 1.6.1.3. For each n ∈ N, let A′n = An {R} be the reduct of An with respect to
the language {R} ⊆ LR. For any m ≥ n and any {R}-epimorphism ψ : A′m → A′n, it
holds that ψ : Am → An is an LR-epimorphism.

Proof. Let r ∈ LR \ {R} be of arity `. Suppose that (a0, . . . , a`−1) ∈ rAm and let
(u0, . . . , u`−1) ∈ rL be such that ϕm(ui) = ai. Since L is perfect and ϕ−1n (b) is clopen for
each b ∈ An, there is a tuple (v0, . . . , v`−1) ∈ [(u0, . . . , u`−1)]id such that vi ∈ ϕ−1n (ψ(ai))

for each i < `. It follows that (v0, . . . , v`−1) ∈ rL, so (ψ(a0), . . . , ψ(a`−1)) ∈ rAn .
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Conversely, if (b0, . . . , b`−1) ∈ rAn , let (v0, . . . , v`−1) ∈ rL be such that ϕn(vi) =

bi. Since L is perfect and ϕ−1m (a) is clopen, for each a ∈ Am, there is a tuple
(u0, . . . , u`−1) ∈ [(v0, . . . , v`−1)]id such that ui ∈ ϕ−1n (ψ−1(bi)) for each i < `. It
follows that (u0, . . . , u`−1) ∈ rL and therefore that (ϕn(u0), . . . , ϕn(u`−1)) ∈ rAn . But
ψϕn(ui) = bi, so we are done.

Let L′ be the reduct of L in the language {R}, or equivalently the projective
limit of (A′n, ϕ

m
n ). Clearly any LR-epimorphism is an {R}-epimorphism, so each ϕn

is. We prove that L′ is a projective Fraïssé limit of a family of {R}-structures, namely
{A′n | n ∈ N}, by showing that (A′n, ϕ

m
n ) is a fundamental sequence. Property (F1) is

clear. Let ψ : A′n → A′k, χ : A′` → A′k be a {R}-epimorphisms. By Claim 1.6.1.3, ψ, χ
are LR-epimorphisms An → Ak, A` → Ak. By (F2) for (An, ϕn), there are m ≥ n and
ψ′ : Am → A` such that ψϕmn = χψ′. Since in particular ψ′ is an {R}-epimorphism
A′m → A′`, we conclude.

It follows that L′ is a projective Fraïssé limit and a close prespace of X. By
[Cam10, Theorem 15], the only perfect compact metrizable {R}-quotients are:

• the Cantor space,

• a disjoint union of finitely many pseudo-arcs,

• a disjoint union of finitely many spaces X = P t
⋃
i∈NQi, where P is a pseudo-

arc, each Qi is a Cantor space clopen in X and
⋃
i∈NQi is dense in X.

We conclude by noticing that the pseudo-arc is not 2-homogeneous (see [Usp00]),
so the only ω-homogeneous space among the ones above is the Cantor space.

Question 1.6.2. Can the condition that L be a close prespace of X be dropped in the
above theorem?

It is worth noting that all examples of quotients of projective Fraïssé limits in the
literature which satisfy the requirements of Question 1.4.8 are, to the author’s knowl-
edge, one dimensional. It is unclear if the higher dimension is an intrinsic obstruction.
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Chapter 2

Finitely representable spaces

In this chapter we explore the question of which compact metrizable spaces appear
as domains of quotients of projective Fraïssé prespaces.

Definition 2.0.1. A compact metrizable space X is LR-representable if there exists a
projective Fraïssé family of finite LR-structures with projective Fraïssé limit L, such
that L is a prespace and (the domain of) L/RL is homeomorphic to X.

A space X is finitely representable if it is LR-representable for some finite LR.

In this terminology, when LR = {R}, the LR-representable spaces have been char-
acterised in [Cam10].

2.1 Some preliminary facts

Proposition 2.1.1. Suppose G is a projective Fraïssé family in the language LR. Let
L be a projective Fraïssé limit of G.

1. If R is interpreted by all structures in G as a reflexive relation, then RL is reflexive
as well.

2. If R is interpreted by all structures in G as a symmetric relation, then RL is
symmetric as well.

3. If R is interpreted by all structures in G as an anti-symmetric relation, then RL

is anti-symmetric as well.

4. If R is interpreted by all structures in G as a transitive relation, then RL is
transitive as well.

5. If R is interpreted by all structures in G as a total relation, then RL is total as
well.
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6. If R is interpreted by all structures in G as having a first (respectively, last)
element, then RL has a first (respectively, last) element as well.

7. If R is interpreted by all structures in G as a connected relation, then for any
partition {U, V } of L into clopen sets there are x ∈ U, y ∈ V with xRLy.

Proof. In this proof we will use property (L2) extensively.
(1) and (2) The proof is similar to the argument carried out in the proof of [IS06,

Lemma 4.1].
(3) Let x, y ∈ L be distinct elements such that xRL y RL x. Pick a clopen subset U

of L such that x ∈ U, y /∈ U and find A ∈ G with an epimorphism ϕ : L → A refining
{U,L \ U}. Then ϕ(x), ϕ(y) are distinct and ϕ(x)RA ϕ(y)RA ϕ(x).

(4) Let x, y, z ∈ L, with x RL y RL z. Since RL is closed, it is enough to show that
for any neighbourhoods U of x and V of z there are x′ ∈ U , z′ ∈ V with x′ RL z′. Let
U ′ ⊆ U, V ′ ⊆ V be clopen neighbourhoods of x, z, respectively, with U ′ = V ′ if x = z

and U ′ ∩ V ′ = ∅ otherwise. Let A ∈ G and ϕ : L→ A be an epimorphism refining the
clopen covering {U ′, V ′,L \ (U ′ ∪ V ′)}. Since ϕ(x)RA ϕ(z), there are x′ ∈ U ′, z′ ∈ V ′

with ϕ(x) = ϕ(x′), ϕ(z) = ϕ(z′), x′ RL z′.
(5) It is enough to show that, given x, y ∈ L, whenever U, V are clopen neighbour-

hoods of x, y respectively, there are x′ ∈ U , y′ ∈ V such that either x′RL y′ or y′RL x′.
Moreover, if x = y it can be assumed that U = V , while for x 6= y one can take
U ∩ V = ∅. Let A ∈ G with an epimorphism ϕ : L → A refining the clopen covering
{U, V,L \ (U ∪V )}. Since ϕ(x)RA ϕ(y) or ϕ(y)RA ϕ(x), there are x′ ∈ U , y′ ∈ V such
that ϕ(x′) = ϕ(x), ϕ(y′) = ϕ(y) and either x′ RL y′ or y′ RL x′.

(6) Argue for the first element, the situation for the last being similar. Fix a
compatible complete metric on L and, for each positive integer n, let Un be a partition of
L with clopen sets of diameter less than 1/n such that Un+1 refines Un. Let ϕn : L→ An

be an epimorphism refining Un onto some An ∈ G. Let xn ∈ L be such that ϕn(xn) is
the first element of RAn and fix a limit point x of the sequence xn, in order to show that
∀y ∈ L x RL y. For this it is enough to prove that given clopen neighbourhoods U, V
of x, y, respectively, where it can be assumed that U = V if x = y and that U ∩ V = ∅
if x 6= y, there are x′ ∈ U , y′ ∈ V with x′ RL y′. Take n such that if x ∈ W ∈ Un and
y ∈ W ′ ∈ Un, then W ⊆ U,W ′ ⊆ V . Let n′ ≥ n be such that xn′ ∈ W . Notice that
ϕn′ refines {W,W ′,L\ (W ∪W ′)}. Since ϕn′(xn′)RAn′ ϕ(y), there are x′ ∈W , y′ ∈W ′

such that ϕn′(x′) = ϕn′(xn′), ϕn′(y′) = ϕn′(y), x′ RL y′.
(7) As for the argument in the proof of [IS06, Lemma 4.3].

Notice that for (1), (2), (5), (6) the converse holds as well.

Now we show that if one admits infinite languages, then every compact metrizable
space is homeomorphic to the quotient of a projective Fraïssé limit. Consequently, in
the sequel of this chapter we will be interested in studying what kind of spaces can
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be obtained with finite languages, with the hope that this notion might provide an
interesting topological dividing line.

Lemma 2.1.2. Let L be any language and let {An | n ∈ N} be a family of finite L-
structures. If for every n ≤ m there is exactly one epimorphism ϕmn : Am → An, then
(An, ϕ

m
n ) is a fundamental sequence.

Proof. First notice that from the hypotheses it follows that for any n,m there is at
most one epimorphism Am → An. If n ≤ m this is in the hypotheses; on the other
hand, if n > m, the existence of an epimorphism ψ : Am → An implies that ψ and ϕnm
are actually isomorphisms; if there were two different isomorphisms Am → An, their
compositions with ϕnm would yield two different isomorphisms An → An.

Consequently, given any two epimorphisms ψ1 : Ah → Ak, ψ2 : Ap → Ak and
letting m = max{h, p}, one has ψ1ϕ

m
h = ψ2ϕ

m
p .

Proposition 2.1.3. Let LR = {R, ρs}s∈2<ω , where the ρs are unary relation symbols
for all s ∈ 2<ω. Then every compact metrizable space is LR-representable.

Proof. Let X be a compact metrizable space and let ≡ be a closed equivalence relation
on 2N such that X w 2N/≡ . Define LR-structures An = (2n, RAn , ρAn

s )s∈2<ω by letting

u RAn u′ ⇔ ∃x, x′ ∈ 2N (u ⊆ x ∧ u′ ⊆ x′ ∧ x ≡ x′)
ρAn
s (u) ⇔ s ⊆ u ∨ u ⊆ s

Now notice that, given n ≤ m, the only epimorphism Am → An is the restriction
map ϕmn defined by ϕmn (w) = w n. Indeed, if w,w′ ∈ 2m are such that w RAm w′,
let x, x′ ∈ 2N with w ⊆ x, w′ ⊆ x′, x ≡ x′; since x n = ϕmn (w), x′ n = ϕmn (w′),
it follows that ϕmn (w) RAn ϕmn (w′). Moreover, if w ∈ 2m satisfies ρAm

s (w) for some
s ∈ 2<ω, so that w is compatible with s, its restriction w n is compatible with s as
well, so ρAn

s (ϕmn (w)) holds. Conversely, assume first that u, u′ ∈ 2n fulfil u RAn u′ and
let x, x′ ∈ 2N such that u ⊆ x, u′ ⊆ x′, x ≡ x′; then x m RAm x′ m, ϕmn (x m) = u,
ϕmn (x′ m) = u′. Finally, suppose that s ∈ 2<ω, u ∈ 2n are such that ρAn

s (u); then there
is at least an element w ∈ 2m such that ϕmn (w) = w n = u and w is compatible with
s, so that ρAm

s (w). To see that ϕmn is the unique epimorphism Am → An, notice that
for any w ∈ 2m, the unique element u ∈ 2n such that ρAn

w (u) is w n.
Consequently, by Lemma 2.1.2, (An, ϕ

m
n ) is a fundamental sequence. Let L =

(2N, RL, ρLs )s∈2<ω be its projective limit. It is now enough to prove RL = ≡, so let
x, x′ ∈ 2N. If x ≡ x′, then ∀n ∈ N x nR

An x′ n, so that xRL x′. Conversely, if xRL x′,
so that ∀n ∈ N x nR

An x′ n, for every n ∈ N there are xn, x′n ∈ 2N such that x n ⊆ xn,
x′ n ⊆ x′n, xn ≡ x′n, so that limn→∞ xn = x, limn→∞ x

′
n = x′, x ≡ x′, since ≡ is

closed.

Remark 2.1.4. In the above proof, the LR-structure on X is such that Aut(X) = {id}.
Therefore it does not contradict Theorem 1.6.1.
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2.2 Closure under topological operations

This section collects some closure properties of finitely representable spaces. We
will need the following notion.

Definition 2.2.1. Let L be an LR-prespace. A point x ∈ L is almost stable if, for all
α ∈ Aut(L), one has that α(x)RL x.

Notice that the set of almost stable points is invariant under the equivalence relation
RL.

Theorem 2.2.2. The finite disjoint sum of finitely representable spaces is finitely rep-
resentable.

Proof. It is enough to prove the result for the disjoint sum of two spaces1. So, for
i ∈ {1, 2} let Xi be LiR-representable for some finite LiR, as witnessed by a projective
Fraïssé family Gi with limit Li. We can sssume that L1R ∩ L2R = {R}. Let LR =

L1R ∪ L2R ∪ {P1, P2}, where P1, P2 are new unary relation symbols.
Given compact metrizable LiR-structures Ai, for i ∈ {1, 2}, define an LR-structure

A = A1 ⊕A2 as follows:

• A is a disjoint union A1 ∪A2, with each Ai clopen in A;

• RA = RA1 ∪RA2 ;

• PAi = Ai;

• if S ∈ LiR is a relation symbol different from R, then SA = SAi .

Notice that if ψi : Ai → Bi are LiR-epimorphisms for i ∈ {1, 2}, then ψ1 ∪ ψ2 :

A1 ⊕ A2 → B1 ⊕ B2 is an LR-epimorphism. Conversely, if ψ : A1 ⊕ A2 → B1 ⊕ B2 is
an LR-epimorphism, then by the interpretations of symbols P1, P2, the restriction ψi
of ψ to Ai has range included in — in fact, equal to — Bi; moreover ψi : Ai → Bi is
an LiR-epimorphism.

Define G as the class of LR-structures A = (A,RA, . . . , PA1 , P
A
2 ) of the form A =

A1 ⊕A2, where Ai ∈ Gi.
Claim 2.2.2.1. G is a projective Fraïssé family.

Proof of claim. (JPP): Let A = A1 ⊕ A2, B = B1 ⊕ B2 ∈ G. By (JPP) of Gi, let
Ci ∈ Gi, with epimorphisms ψi : Ci → Ai, θi : Ci → Bi. Set C = C1 ⊕ C2 ∈ G,
ψ = ψ1 ∪ ψ2 : C → A, θ = θ1 ∪ θ2 : C → B. Then ψ, θ are epimorphisms.

(AP): Let A = A1 ⊕ A2, B = B1 ⊕ B2, C = C1 ⊕ C2 ∈ G, with epimorphisms
ψ : B → A, θ : C → A. So let ψi = ψ Bi

, θi = θ Ci
, then ψi : Bi → Ai, θi : Ci → Ai

1Notice that for the sum of n spaces, a direct proof would provide a smaller language than the one
resulting by iterating the construction in the proof.
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are epimorphisms. By (AP) for Gi, let Di ∈ Gi, ψ′i : Di → Bi, θ′i : Di → Ci be
epimorphisms such that ψiψ′i = θiθ

′
i. Let D = D1⊕D2 ∈ G. So ψ′ = ψ′1 ∪ψ′2 : D → B,

θ′ = θ′1 ∪ θ′2 : D → C are epimorphisms such that ψψ′ = θθ′.

Let L = L1 ⊕ L2.

Claim 2.2.2.2. L is the projective Fraïssé limit of G.

Proof of claim. It is enough to carry out the following three verifications:

• (L1) Let A = A1 ⊕ A2 ∈ G. By projective universality of Li, let ψi : Li → Ai be
an epimorphism. Then ψ = ψ1 ∪ ψ2 : L→ A is an epimorphism.

• (L2) Let U be a partition of L into clopen sets, which can be assumed to refine
{L1,L2}. So U ∩ P(Li) is a partition of Li into clopen sets. Let Ai ∈ Gi with an
epimorphism ψi : Li → Di refining U ∩ P(Li). So ψ = ψ1 ∪ ψ2 : L→ A1 ⊕ A2 is
an epimorphism refining U .

• (L3) Let A = A1 ⊕ A2 ∈ G, with epimorphisms ψ1, ψ2 : L → A. So ψj Li
are

epimorphisms Li → Ai. By projective ultrahomogeneity of Li, let θi : Li → Li
be an isomorphism such that ψ1 Li

θi = ψ2 Li
. So θ = θ1 ∪ θ2 : L → L is an

isomorphism such that ψ1θ = ψ2.

Notice that RL is an equivalence relation on L and L/RL is a disjoint sum of
L1/RL1 ,L2/RL2 , completing the proof.

For later use we remark that in the proof of Theorem 2.2.2, if x is an almost stable
point in one of the Li, then x is almost stable also in the resulting L.

Theorem 2.2.3. The finite product of finitely representable spaces is finitely repre-
sentable.

Proof. It is enough to prove the assertion for products of two factors2. So, for i ∈ {1, 2}
let Xi be LiR-representable, for some finite LiR, as witnessed by a projective Fraïssé
family Gi with limit Li. We can assume that L1R ∩ L2R = {R}. Let LR = L1R ∪ L2R ∪
{r1, r2}, where r1, r2 are two new binary relation symbols. Let G = {A × B | A ∈
G1, B ∈ G2} where:

• (a, b)RA×B (a′, b′)⇔ a RA a′ ∧ b RB b′;

• SA×B((a1, b1), . . . , (am, bm)) ⇔ SA(a1, . . . , am) for any m-ary relation symbol
S ∈ L1R \ {R};

2Remarks about the language similar to those in Theorem 2.2.2 apply here.
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• SA×B((a1, b1), . . . , (am, bm)) ⇔ SB(b1, . . . , bm) for any m-ary relation symbol
S ∈ L2R \ {R};

• rA×B1 ((a1, b1), (a2, b2))⇔ a1 = a2;

• rA×B2 ((a1, b1), (a2, b2))⇔ b1 = b2.

Claim 2.2.3.1. ψ : A×B → C×D is an epimorphism if and only if ψ = θ×γ for some
epimorphisms θ : A→ C, γ : B → D.

Proof of claim. Let ψ : A×B → C×D be an epimorphism. Since rA×B1 ((a, b1), (a, b2)),
from rC×D1 (ψ(a, b1), ψ(a, b2)) it follows that ψ(a, b1), ψ(a, b2) have the same first com-
ponent; similarly for ψ(a1, b), ψ(a2, b). This means that ψ = θ × γ for some surjective
θ : A→ C, γ : B → D. It remains to prove that θ, and similarly γ, are epimorphisms.

Suppose cRC c′. Since RD is reflexive, by reflexivity of RL and Proposition 2.1.1(1),
it follows that for any d ∈ D one has (c, d) RC×D (c′, d). So there are (a, b), (a′, b′) ∈
A × B such that ψ(a, b) = (c, d), ψ(a′, b′) = (c′, d), (a, b) RA×B (a′, b′). Consequently,
θ(a) = c, θ(a′) = c′, a RA a′. Conversely, if a RA a′, for any b ∈ B one has (a, b)RA×B

(a′, b), whence (θ(a), γ(b))RC×D (θ(a′), γ(b)), so θ(a)RC θ(a′).
Let S ∈ L1R\{R} be anm-ary relation symbol. If SC(c1, . . . , cm), for any d ∈ D one

has SC×D((c1, d), . . . , (cm, d)). Let a1, . . . , am ∈ A, b1, . . . , bm ∈ B with ψ(a1, b1) =

(c1, d), . . . , ψ(am, bm) = (cm, d), SA×B((a1, b1), . . . , (am, bm)). This implies θ(a1) = c1,
. . . , θ(am) = cm, SA(a1, . . . , am). Conversely, whenever SA(a1, . . . , am), picking any
b ∈ B, one has SA×B((a1, b), . . . , (am, b)), whence SC×D(ψ(a1, b), . . . , ψ(am, b)), which
allows to conclude that SC(θ(a1), . . . , θ(am)).

Assume now θ : A → C, γ : B → D are epimorphisms, and set ψ = θ × γ. Then,
for any (c, d), (c′, d′) ∈ C ×D,

(c, d)RC×D (c′, d′)⇔ c RC c′ ∧ d RD d′ ⇔
⇔ ∃a, a′ ∈ A ∃b, b′ ∈ B

(θ(a) = c ∧ θ(a′) = c′ ∧ γ(b) = d ∧ γ(b′) = d′ ∧ a RA a′ ∧ b RB b′)⇔
⇔ ∃a, a′ ∈ A ∃b, b′ ∈ B

(ψ(a, b) = (c, d) ∧ ψ(a′, b′) = (c′, d′) ∧ (a, b)RA×B (a′, b′)).

If S ∈ L1R \ {R} is an m-ary relation symbol and SA×B((a1, b1), . . . , (am, bm)), then
SA(a1, . . . , am), whence SC(θ(a1), . . . , θ(am)) and finally:

SC×D(ψ(a1, b1), . . . , ψ(am, bm)).

Conversely, suppose SC×D((c1, d1), . . . , (cm, dm)), that is, SC(c1, . . . , cm). So there
are a1, . . . , am ∈ A such that θ(a1) = c1, . . . , θ(am) = cm, SA(a1, . . . , am). Tak-
ing any b1, . . . , bm ∈ B such that γ(b1) = d1, . . . , γ(bm) = dm, one has ψ(a1, b1) =

(c1, d1), . . . , ψ(am, bm) = (cm, dm), SA×B((a1, b1), . . . , (am, bm)). Similarly for symbols
in L2R.
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Claim 2.2.3.2. G is a projective Fraïssé family.

Proof of claim. (JPP): Let A × B, C × D ∈ G. By (JPP) of G1 and G2, let E ∈ G1,
F ∈ G2 with epimorphisms ψ1 : E → A, ψ2 : E → C, θ1 : F → B, θ2 : F → D. Then
ψ1 × θ1 : E × F → A×B, ψ2 × θ2 : E × F → C ×D are epimorphisms.

(AP): Let A1×A2, B1×B2, C1×C2 ∈ G with epimorphisms ψ : B1×B2 → A1×A2,
θ : C1 × C2 → A1 × A2. By the preceding claim, there are epimorphisms ψ1, ψ2, θ1, θ2

such that ψ = ψ1 × ψ2, θ = θ1 × θ2. Using (AP) of G1, G2, let D1 ∈ G1, D2 ∈ G2
with epimorphisms γ1 : D1 → B1, ρ1 : D1 → C1, γ2 : D2 → B2, ρ2 : D2 → C2

be such that ψ1γ1 = θ1ρ1, ψ2γ2 = θ2ρ2. Thus γ1 × γ2 : D1 × D2 → B1 × B2,
ρ1 × ρ2 : D1 ×D2 → C1 ×C2 are epimorphisms such that ψ(γ1 × γ2) = θ(ρ1 × ρ2).

Let now (An, ϕ
m
n ), (Bn, ρ

m
n ) be fundamental sequences for G1,G2, respectively.

Claim 2.2.3.3. (An ×Bn, ϕmn × ρmn ) is a fundamental sequence for G.

Proof of claim. Let A × B ∈ G. There are n,m ∈ N and epimorphisms ψ : An → A,
θ : Bm → B. If n ≤ m, then (ψϕmn ) × θ : Am × Bm → A × B is an epimorphism;
otherwise, ψ × (θρnm) : An ×Bn → A×B is.

Let now E1×E2, F1×F2 ∈ G, n ∈ N, with epimorphisms ψ1×ψ2 : F1×F2 → E1×E2,
θ1 × θ2 : An × Bn → E1 × E2. Let m,m′ ≥ n with epimorphisms γ1 : Am → F1,
γ2 : Bm′ → F2 be such that ψ1γ1 = θ1ϕ

m
n , ψ2γ2 = θ2ρ

m′
n . Suppose for instance that

m ≤ m′. Then (ψ1×ψ2)((γ1ϕ
m′
m )×γ2) = (θ1×θ2)(ϕm

′
n ×ρm

′
n ) : Am′×Bm′ → E1×E2.

So L = L1 × L2 is the support of the projective Fraïssé limit of G. Moreover,
denoting ϕn : L1 → An, ρn : L2 → Bn the projections of the limits onto the members
of the fundamental sequences, and given (a, b), (a′, b′) ∈ L,

(a, b)RL (a′, b′)⇔ ∀n ∈ N (ϕn(a), ρn(b))RAn×Bn (ϕn(a′), ρn(b′))⇔
⇔ ∀n ∈ N (ϕn(a)RAn ϕn(a′) ∧ ρn(b)RBn ρn(b′))⇔ a RL1 a′ ∧ b RL2 b′.

So L/RL is homeomorphic to L1/RL1 × L2/RL2 .

We now prove that the class of finitely representable spaces is closed under taking
quotients by Aut(L)-invariant equivalence relations.

Theorem 2.2.4. Let X be a finitely representable metrizable space; say this is witnessed
by a language LR and a homeomorphism Φ : X → L/RL . Let ∼= be an equivalence
relation on X which is such that if x ∼= y then Φ−1α∗Φ(x) ∼= Φ−1α∗Φ(y), for all
α ∈ Aut(L). Then X/∼= is finitely representable.

Proof. Let ≡ be the closed equivalence relation on L defined by u ≡ v if and only if
Φ−1(p(u)) ∼= Φ−1(p(v)), where p : L → L/RL is the quotient map. Notice that ≡
extends RL and that α(2)[≡] = ≡, for all α ∈ Aut(L).
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Let G be a projective Fraïssé family of finite LR-structures of which L is a projective
Fraïssé limit.

Claim 2.2.4.1. Assume that A ∈ G and let ψ, θ : L → A be LR-epimorphisms. Then
ψ(2)[≡] = θ(2)[≡].

Proof of claim. Let α : L → L be an isomorphism such that ψ = θα. Then ψ(2)[≡] =

(θα)(2)[≡] = θ(2)[≡].

Set L′S = LR ∪ {S}, where S is a new binary relation symbol. For every A ∈ G
let A′ be the expansion of A to L′S defined by letting SA′ = ψ(2)[≡] for any arbitrary
LR-epimorphism ψ : L→ A. Let G′ = {A′}A∈G .

Claim 2.2.4.2. Given A,B ∈ G, a function ψ : A → B is an LR-epimorphism if and
only if it is an L′S-epimorphism from A′ to B′.

Proof of claim. The backward implication holds as A′, B′ are expansions of A,B, re-
spectively.

For the forward direction, it is enough to show that ψ respects S. So let a, b ∈ A
be such that aSA′b; pick any LR-epimorphism θ : L → A and let u, v ∈ L be such
that θ(u) = a, θ(v) = b, u ≡ v. So, by Claim 2.2.4.1, u, v, together with the LR-
epimorphism ψθ : L → B, witness that ψ(a)SB

′
ψ(b). Conversely, let a, b ∈ B be such

that aSB′b and fix an arbitrary LR-epimorphism θ : L → B; then there are u, v ∈ L
such that a = θ(u), b = θ(v), u ≡ v. Let γ : L → A be an LR-epimorphism such
that ψγ = θ; such an epimorphism exists by combining (L1) and (L3). Then, again by
Claim 2.2.4.1, γ(u)SA

′
γ(v), ψγ(u) = a, ψγ(v) = b and we are done.

By the claim, G′ is a projective Fraïssé family and a projective Fraïssé limit L′ of G′

is an expansion of L to L′S . As for the interpretation of S in L′, we have the following.

Claim 2.2.4.3. SL′ = ≡.

Proof of claim. Let u, v ∈ L′ and assume first uSL′v. By the closure of≡, to show u ≡ v
it is enough to prove that for any clopen neighbourhoods U, V of u, v, respectively, there
are u′ ∈ U , v′ ∈ V with u′ ≡ v′, where we can take U = V if u = v, and U ∩ V = ∅
otherwise. So let A′ ∈ G′ with an epimorphism ψ : L′ → A′ refining the clopen covering
{U, V,L′ \ (U ∪ V )}. Since ψ(u)SA

′
ψ(v), there are u′, v′ ∈ L′ with ψ(u′) = ψ(u),

ψ(v′) = ψ(v), u′ ≡ v′. Since it follows that u′ ∈ U, v′ ∈ V , we are done.
Conversely, suppose u ≡ v. Again, fix any clopen neighbourhoods U, V of u, v,

respectively, such that U = V if u = v, and U, V disjoint otherwise. Pick A′ ∈ G′ and
an epimorphism ψ : L′ → A′ refining the clopen covering {U, V,L′ \ (U ∪ V )}. Since
ψ(u)SA

′
ψ(v), there are u′, v′ ∈ L′ (actually u′ ∈ U, v′ ∈ V ) with u′SL′v′, and we are

done again.
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To finish the proof, notice that X/∼= is homeomorphic to L/≡ .

Remark 2.2.5. In the setting of the previous result, let ∼ be an equivalence relation
on X which is the identity outside Φ[p[G]]2, where G ⊆ L is the set of almost stable
points. If x ∼ y, then Φ−1α∗Φ(x) ∼ Φ−1α∗Φ(y), for all α ∈ Aut(L), by definition of
almost stable. So X/∼ is finitely representable.

2.3 Arcs, hypercubes, graphs

We now apply the results of the preceding sections to demonstrate the finite repre-
sentability of some classes of continua. We begin by establishing the following.

Theorem 2.3.1. Arcs are finitely representable.

We prove Theorem 2.3.1 through a sequence of lemmas.
Let LR = {R,≤}, where ≤ is a binary relation symbol. Let X be the class 3 of

those finite LR-structures A such that:

• ≤A is a total order;

• a RA b if and only if a = b or a, b are ≤A-consecutive.

Lemma 2.3.2. Class X is a projective Fraïssé family.

Proof. If A = {1} ∈ X is defined by letting RA = ≤A = {(1, 1)}, then for any B ∈ X
the constant map ψ : B → A is an epimorphism. So it is enough to verify (AP), since
together with the existence of a final object in X , it implies (JPP).

Let A,B,C ∈ X with epimorphisms ψ : B → A, θ : C → A. Let

a1 ≤A . . . ≤A a|A|

be an enumeration of A. Let Nj = max
{
|ψ−1(aj)|, |θ−1(aj)|

}
, for each j ∈ {1, . . . , |A|},

and define D ∈ X such that

|D| =
|A|∑
j=1

Nj

and enumerate it as D = {djl | j ∈ {1, . . . , |A|}, l ∈ {1, . . . , Nj}}. Let ≤D be the total
order on D determined by the lexicographic order on the pairs of indices (j, l). This
determines relation RD too.

Now define γ : D → B by mapping {dj1, . . . , djNj} onto ψ−1(aj) in an increasing
way, and similarly define ρ : D → C. So γ, ρ are epimorphisms and ψγ = θρ.

Let X be the projective Fraïssé limit of X .
3This class coincides with that of finite HLO’s, or Hasse linear orders, which appears in Chapter 3.
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Lemma 2.3.3. The relation ≤X is a total order on X having a least and a last element.

Proof. By Proposition 2.1.1, parts (1)(3)(4)(5)(6).

Lemma 2.3.4. The relation RX is an equivalence relation.

Proof. By Proposition 2.1.1, parts (1)(2), RX is reflexive and symmetric. To complete
the proof, it will be shown that every u ∈ X is RX-related to at most one element
different from itself.

So suppose, towards a contradiction, that u, v1, v2 are distinct elements in X such
that v1 RX u RX v2. Let U, V1, V2 be disjoint clopen neighbourhoods of u, v1, v2,
respectively. If ψ : X → A is any epimorphism onto an element of X refining
{U, V1, V2,X \ (U ∪ V1 ∪ V2)}, since ψ(u), ψ(v1), ψ(v2) are distinct and ψ(v1) R

A

ψ(u) RA ψ(v2), it follows that ψ(v1), ψ(u), ψ(v2) are ≤A-consecutive, with ψ(u) be-
ing the midpoint. Say, for instance, ψ(v1) ≤A ψ(u) ≤A ψ(v2). Then let B = A ∪ {z},
where z /∈ A, with the symbols of LR interpreted as follows:

• ≤B is obtained from ≤A by inserting z between ψ(u), ψ(v2);

• a RB b if and only if a = b or a, b are ≤B-consecutive.

So B ∈ X . Define θ : B → A as the identity on the elements of A and by letting
θ(z) = ψ(u). Then there cannot be any epimorphism γ : X → B such that ψ = θγ,
since γ(u) could not be RB-related to both ψ(v1), ψ(v2).

Lemma 2.3.5. If u ∈ X then u has a basis of clopen neighbourhoods that are convex
sets with respect to ≤X.

Proof. Let U be a clopen subset of X containing u. Let ψ : X→ A be an epimorphism
onto some A ∈ X refining the clopen covering {U,X \U}. Let V = ψ−1(ψ(u)), so that
V is clopen. If v, z ∈ V with v ≤X z, then for any w ∈ X with v ≤X w ≤X z one has
ψ(w) = ψ(u), whence w ∈ V .

Lemma 2.3.6. If u, v ∈ X, then u, v are ≤X-consecutive if and only if they are distinct
and RX-related.

Proof. Suppose u ≤X v, so that in particular ψ(u) ≤A ψ(v) for any epimorphism ψ

from X onto some A ∈ X .
Assume first they are consecutive (in particular, u 6= v). First, notice that for

any A ∈ X and epimorphism ψ : X → A either ψ(u) = ψ(v) or ψ(u), ψ(v) are ≤A-
consecutive, since ψ is monotone with respect to the orders. So it follows that ψ(u)RA

ψ(v). By the arbitrariness of A and ψ, this implies u RX v.
Conversely, assume u 6= v, uRXv and suppose there is z ∈ X with u <X z <X v. Let

U, V,W be disjoint clopen neighbourhoods of u, v, z, respectively. Let A ∈ X with an
epimorphism ψ : X→ A refining {U, V,W,X \ (U ∪ V ∪W )}. Then ψ(u) <A ψ(z) <A

ψ(v), so ψ(u), ψ(v) are not RA-related, a contradiction.
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Lemma 2.3.7. A closed total order ≤ on a compact metric space X is complete.

Proof. Let A be a bounded non-empty subset of X. Let A′ = {x ∈ X | ∀y ∈ A y ≤ x},
the set of upper bounds of A, which is a closed non-empty subset ofX. It is then enough
to establish the existence of minA′. Let {xα}α∈β be a maximal decreasing sequence
in A′. Since every ≤-open interval is an open subset of X, by separability of X the
ordinal β must be countable. If β = γ + 1 is a successor ordinal, then xγ = minA′.
Otherwise, by compactness, inf{xα}α∈β exists and it equals minA′.

Let I = X/RX and let ϕ : X → I be the quotient map. On I define [u] ≤I [v] if
and only if u ≤X v. By Lemma 2.3.6 this is well defined. Moreover, by Lemmas 2.3.3,
2.3.6 and 2.3.7, this is a dense, complete total order with a first and a last element.

Lemma 2.3.8. The quotient topology on I is the order topology induced by ≤I .

Proof. We first show that sets of the form I[a] = {[u] ∈ I | [a] <′ [u]}, I [b] = {[u] ∈
I | [u] <′ [b]} are open in I. For the first kind, since [a] contains at most two elements,
let a∗ be its maximum with respect to ≤X. Then I[a] is the image under ϕ of {u ∈
X | a∗ <X u}, which is open (since ≤X is closed and total) and RX-invariant. The same
argument works for the second type of intervals.

Conversely, let U be open in I and fix [u] ∈ U . By Lemma 2.3.5 for each point in [u]

there is a ≤X-convex, clopen subset of X containing that point and included in ϕ−1(U).
Since [u] is either a singleton or a doubleton consisting of two ≤X-consecutive points,
the union of these clopen sets, call it I, is ≤X-convex. It is then enough to show that,
if min I 6= [u], then I contains some element that strictly precedes all elements of [u],
and similarly that if max I 6= [u] then I contains some element strictly bigger than the
elements of [u]. So suppose min I 6= [u]. If, towards a contradiction, [u] contained the
least element of I, let J be the set of all strict predecessors of min I. Since I is clopen
and ≤X is closed, J is a clopen, non-empty, bounded subset of X. By Lemma 2.3.7, J
has a maximum z. So z is an immediate predecessor of min I, but z and min I are not
RX-related, since min I ∈ [u] ⊆ I. This contradicts Lemma 2.3.6.

Lemma 2.3.9. ≤I has order type 1 + λ+ 1, where λ is the order type of the real line.

Proof. We already noted that ≤I is bounded and complete. We remark that it is also
a separable order: indeed, it is a dense order, so every open interval is non-empty and,
by Lemma 2.3.8, open in the Polish space I, thus every interval contains a point of
a fixed countable dense subset of I. Since by [Ros82, Theorem 2.30] a separable and
complete total order without first or last element has order type λ, we are done.

Since the topology of I is induced by an order of type 1 + λ + 1, it follows that I
is an arc, concluding the proof of Theorem 2.3.1. Notice that Aut(I) is the subgroup
of homeomorphisms of the arc which preserve ≤I .
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An immediate consequence is now the following. Recall that a hypercube is a space
homeomorphic to [0, 1]n, for some n.

Corollary 2.3.10. Every hypercube is finitely representable.

Proof. By Theorems 2.2.3 and 2.3.1.

For the next consequence recall that, in continuum theory, a graph is defined as a
finite union of arcs any two of them meeting at most in one or both of their endpoints
(see for example [Nad92]).

Corollary 2.3.11. Every graph is finitely representable.

Proof. Notice that in the proof of Theorem 2.3.1 each endpoint of arc I is the image
under the quotient map of an almost stable point, since the extrema of a total order —
in this case ≤X — are preserved under isomorphism. So we can use Theorem 2.2.2 to
obtain a disjoint union of arcs; the remark following that theorem allows us to apply
Theorem 2.2.4 to glue endpoints and thus obtain any possible graph.

2.4 Questions

In the previous sections we exhibited some simple classes of finitely representable
spaces, enlarging the examples given in [Cam10]. This suggests the following general
question.

Question 2.4.1. What spaces are finitely representable?

In our examples, due to the application of the constructions of Section 2.2, the lan-
guages and the structures associated to the spaces were in some sense always related to
the obvious structural characteristics of the spaces, starting from an order representing
the arc. The following rather vague question comes to mind.

Question 2.4.2. Given a finitely representable space, what are the minimal, or most
natural, language and structures representing it? Can some specific features of the
space be derived directly from the language? What are the obstructions that forbid a
space to be represented with a given language?
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Chapter 3

Smooth fences

In this chapter we introduce and begin the study of a new class of topological
spaces, which we call fences. Among them, we define the subclass of smooth fences
and characterize them as those fences admitting an embedding in 2N× [0, 1]. We relate
smooth fences to a class of finite structures.

3.1 Finite Hasse forests

Henceforth fix LR = {R,≤}, where ≤ is a binary relation symbol. A Hasse partial
order (HPO) is a compact metrizable LR-structure P such that

• ≤P is a partial order, that is, it is reflexive, anti-symmetric and transitive;

• a RP b if and only if a = b or a, b are ≤P -consecutive, that is:

– a ≤P b and whenever a ≤P c ≤P b it holds that c = a or c = b; or

– b ≤P a and whenever b ≤P c ≤P a it holds that c = a or c = b.

Indeed, if P is a finite HPO, the relation RP is the Hasse diagram 1 of ≤P . Where
clear we shall write a ≤ b instead of a ≤P b, and similarly for a < b and a R b. When
a ≤ b we also let [a, b] = {c ∈ P | a ≤ c ≤ b}. If ≤P is total, then we say that P is a
Hasse linear order (or HLO).

If P, P ′ are HPOs we denote by P t P ′ the HPO where the support and the inter-
pretations of ≤ and R are the disjoint unions of the corresponding notions in P, P ′.

Definition 3.1.1. A Hasse forest (H-forest) is a HPO whose Hasse diagram has no
cycles, and we denote by F the family of all finite H-forests.

Definition 3.1.2. For an HPO P , denote by MC(P ) the set of maximal chains of P
with respect to the partial order ≤P .

1see [GYZ14, Section 3.2.3] for the definition and examples.
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Figure 3.1: A representation of a finite HPO P . The edges represent the relation
RP and a ≤P b if and only if a is connected to b by a (possibly empty) sequence of
ascending edges.

Notice that if P ∈ F and B ∈ MC(P ) then B is the unique maximal chain to which
both minB and maxB belong. Indeed, if B′ ∈ MC(P ) is such that minB,maxB ∈ B′

then minB′ = minB and maxB′ = maxB by the maximality of B, so if B 6= B′ there
would be two RP -paths joining minB and maxB.

In [BK15] it is shown2 that the class of all finite H-forests with a minimum is a
projective Fraïssé family whose limit’s quotient with respect to R is the Lelek fan. In
Lemma 2.3.2 it is shown that the class X of all finite HLOs is a projective Fraïssé
family whose limit’s quotient is the arc. Here we prove that, though the family of all
finite HPOs is not a projective Fraïssé family, the family of all finite H-forests is.

We begin by describing a smaller yet cofinal family which plays a central role in the
rest of this dissertation.

Definition 3.1.3. Let F0 be the collection of all P ∈ F whose maximal chains are
pairwise disjoint. In other words, the elements of F0 are the finite disjoint unions of
finite HLOs.

Notice that if P ∈ F0 and Q ⊆ P is ≤P -convex — that is, whenever b, b′ ∈ Q, a ∈ P
are such that b ≤P a ≤P b′, then a ∈ Q — then Q with the induced LR-structure is in
F0.

Proposition 3.1.4. F0 is cofinal in the family of all finite HPOs.

Proof. Let P be a finite HPO. If MC(P ) = {B1, . . . , Bm}, let P ′ = B′1t . . .tB′m where
every B′j is isomorphic to Bj with the induced structure. Then there is an epimorphism
ϕ : P ′ → P , given by letting ϕ be an isomorphism from B′j onto Bj for 1 ≤ j ≤ m.

Proposition 3.1.5. The family of all finite HPOs is not a projective Fraïssé family.

2Albeit with a different language, it is easy to see that a continuous surjection is an epimorphism
with one such language iff it is so with the other, thus ensuring that the limit is the same.
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Proof. We show that the family of all finite HPOs lacks amalgamation. Let

S ={a, b, c, d},
P ={a0, b0, b′0, c0, d0},
Q ={a1, b1, c1, c′1, d1},

be ordered as follows (see Figure 3.2):

• For S: a = minS, d = maxS, and b, c are incomparable.

• For P : a0 < b0, a0 < c0 < d0, b
′
0 < d0, and no other order comparabilities hold,

except for reflexivity and transitivity.

• For Q: a1 < b1 < d1, a1 < c1, c
′
1 < d1, and no other order comparabilities hold,

except for reflexivity and transitivity.

a

b c

d

S

a0

b0

b′0
c0

d0

P

a1

b1
c1

c′1

d1

Q

Figure 3.2

Define ϕ : P → S, ψ : Q→ S by letting:

ϕ(a0) = ψ(a1) = a,

ϕ(b0) = ϕ(b′0) = ψ(b1) = b,

ϕ(c0) = ψ(c1) = ψ(c′1) = c,

ϕ(d0) = ψ(d1) = d.

Then ϕ,ψ are epimorphisms. To show that there is no amalgamation, by Proposi-
tion 3.1.4 it is enough to show that there is no F ∈ F0 with epimorphisms θ : F →
P, ρ : F → Q such that ϕθ = ψρ. Otherwise, as a0 < d0, there must be B ∈ MC(F )

and i, i′ ∈ B, with i < i′, such that θ(i) = a0, θ(i
′) = d0, so that θ[B] = {a0, c0, d0};

moreover ρ(i) = a1, ρ(i′) = d1. If j ∈ B is such that θ(j) = c0, then i < j < i′ and
ρ(j) ∈ {c1, c′1}, since ϕθ = ψρ. If ρ(j) = c1, this contradicts j ≤ i′, as ρ(j) 6≤ ρ(i′);
similarly, if ρ(j) = c′1, this contradicts i ≤ j.

Let us turn to the proof of the central result of the section.
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Theorem 3.1.6. The family F of all finite H-forests is a projective Fraïssé family.

First, we note the following simple but useful observation.

Lemma 3.1.7. Let P, P ′ ∈ F , and let ϕ : P → P ′ be an epimorphism. If B ∈ MC(P ),
then there is B′ ∈ MC(P ′) such that ϕ[B] ⊆ B′. If B′ ∈ MC(P ′), then there exists
B ∈ MC(P ) such that ϕ[B] = B′.

Proof. For the first statement, since B ∈ MC(P ) and ϕ is an epimorphism, then ϕ[B]

is a chain in P ′, so ϕ[B] is included in a maximal chain.
For the second assertion, fix B′ ∈ MC(P ′). Since minB′ ≤ maxB′ and ϕ is an

epimorphism, there are a, b ∈ P such that a ≤ b, ϕ(a) = minB′, ϕ(b) = maxB′. Let
B ∈ MC(P ) contain a, b. Since minB ≤ a then ϕ(minB) ≤ minB′, so ϕ(minB) =

minB′; analogously, ϕ(maxB) = maxB′. Since P ′ is an H-forest and ϕ respects R, it
follows that ϕ[B] = B′.

We can also prove a sort of converse. Given LR-structures P, P ′ and a function
ϕ : P → P ′, we say that ϕ is LR-preserving if a RP b ⇒ ϕ(a) RP

′
ϕ(b) and a ≤P b ⇒

ϕ(a) ≤P ′ ϕ(b), for every a, b ∈ P .

Lemma 3.1.8. Let P, P ′ ∈ F , and let ϕ : P → P ′ be an LR-preserving function. If
for each B′ ∈ MC(P ′) there exists B ∈ MC(P ) such that ϕ[B] = B′, then ϕ is an
epimorphism.

Proof. The function ϕ is clearly surjective. Let a′, b′ ∈ P ′ such that a′ ≤ b′ and let
B′ ∈ MC(P ′) with a′, b′ ∈ B′. Let B ∈ MC(P ) such that ϕ[B] = B′, then there are
a, b ∈ B such that ϕ(a) = a′, ϕ(b) = b′ and a ≤ b. If a′Rb′ with a′ < b′, then a, b can be
chosen to be RP -related by letting a = max(B∩ϕ−1(a′)) and b = min(B∩ϕ−1(b′)).

Proof of Theorem 3.1.6. Since for every P ∈ F there is an epimorphism from P to the
H-forest consisting of a single point, it suffices to prove amalgamation. Let P,Q, S ∈ F
and epimorphisms ϕ : P → S, ψ : Q→ S.

For each C ∈ MC(P ), by Lemma 3.1.7 there is D ∈ MC(Q) such that ψ[D] ⊇ ϕ[C].
Let C ′ = ψ−1(ϕ[C]) ∩ D. Since C,ϕ[C], C ′ with the inherited relations are finite
HLOs and ϕ C , ψ C′ are, in particular, epimorphisms onto ϕ[C], by Lemma 2.3.2,
there exist EC ∈ X and epimorphisms ϕ′C : EC → C, ψ′C : EC → C ′ and such that
ϕ Cϕ

′
C = ψ C′ψ

′
C .

Analogously, for each C ∈ MC(Q) there exists D ∈ MC(P ) such that ϕ[D] ⊇ ψ[C].
As above there exist EC ∈ X and epimorphisms ϕ′C : EC → C ′ = ϕ−1(ψ[C]) ∩D and
ψ′C : EC → C such that ϕ C′ϕ

′
C = ψ Cψ

′
C .

Define the LR-structure:

T =
⊔
{EC | C ∈ MC(P ) tMC(Q)} ∈ F0,
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and ϕ′ : T → P,ψ′ : T → Q, where, for x ∈ EC , ϕ′(x) = ϕ′C(x) and ψ′(x) = ψ′C(x). By
construction ϕϕ′ = ψψ′. Since ϕ′C , ψ

′
C are epimorphisms then ϕ′, ψ′ are LR-preserving.

Let C ∈ MC(P ), then ϕ′[EC ] = ϕ′C [EC ] = C. Analogously if C ∈ MC(Q), then
ψ′[EC ] = ψ′C [EC ] = C. By Lemma 3.1.8, ϕ′, ψ′ are thus epimorphisms.

By Theorem 3.1.6, Proposition 3.1.4 and Proposition 1.1.1 it follows that:

Corollary 3.1.9. F0 is a projective Fraïssé family with the same projective Fraïssé
limit as F .

3.2 Projective limits of sequences in F0

In the next section we determine the spaces which are approximable by fine projec-
tive sequences from F0. For this, we establish some properties of projective sequences
in F0 and their limits which are of use later. For the remainder of the section let
(Pn, ϕ

m
n ) be a fine projective sequence in F0 with projective limit P, and p : P→ P/RP

be the quotient map. Notice that ≤P is a partial order relation.

Lemma 3.2.1. Let u, v ∈ P with u ≤ v. Then [u, v] is R-connected.

Proof. First notice that the sequence ϕ−1n ([ϕn(u), ϕn(v)]) converges in K(P) to [u, v],
since ∀n ∈ N ϕ−1n+1([ϕn+1(u), ϕn+1(v)]) ⊆ ϕ−1n ([ϕn(u), ϕn(v)]) and⋂

n∈N
ϕ−1n ([ϕn(u), ϕn(v)]) = [u, v].

By Lemma 1.2.10 it is now enough to observe that every [ϕn(u), ϕn(v)] is R-connected.

Lemma 3.2.2. The RP-equivalence classes contain at most two elements; moreover,
each class is totally ordered and convex with respect to ≤P.

Proof. Let u, v, w ∈ P be RP-related elements. If u, v, w were all distinct, there would
exist n ∈ N such that ϕn(u), ϕn(v), ϕn(w) are all distinct and pairwise RPn-related,
which is impossible, since Pn ∈ F0.

If u RP v, then ϕn(u) RPn ϕn(v) for every n; in particular, ϕn(u), ϕn(v) are ≤Pn

comparable for every n. It follows that either ∀n ∈ N ϕn(u) ≤ ϕn(v) or ∀n ∈ N ϕn(v) ≤
ϕn(u), whence either u ≤ v or v ≤ u.

Finally, if u RP v but u <P w <P v for some u, v, w ∈ P, let n ∈ N be such
that ϕn(u), ϕn(v), ϕn(w) are distinct. Then both ϕn(u) RPn ϕn(v) and ϕn(u) <Pn

ϕn(w) <Pn ϕn(v), which is a contradiction.

Lemma 3.2.3. If u, v ∈ P are not RP-related and u ≤ v holds, then whenever u′ RP

u, v′ RP v, the relation u′ ≤P v′ holds.
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Proof. For n ∈ N big enough, ϕn(u), ϕn(v) are distinct and not RPn-related. Since
ϕn(u) ≤ ϕn(v), Pn ∈ F0, and RPn-related distinct elements are one the immediate ≤Pn-
successor of the other and viceversa, it follows that ϕn(u′) ≤ ϕn(v′). This inequality
holding eventually, the relation u′ ≤P v′ is established.

Lemma 3.2.4. The maximal chains of P are pairwise disjoint.

Proof. Suppose that u, v, v′ ∈ P are such that u is ≤P-comparable to v, v′. For each
n ∈ N, ϕn(u) is ≤P-comparable to ϕn(v), ϕn(v′). But Pn ∈ F0, so ϕn(v), ϕn(v′) are
≤Pn-comparable. It follows that v, v′ are ≤P-comparable.

Corollary 3.2.5. The relation ≤P/RP
= p(2)[≤P] on P/RP is a closed order relation.

Proof. That ≤P/RP is closed is observed at the beginning of Section 1.2. Moreover:

• ≤P/RP is reflexive by the reflexivity of ≤P.

• If x ≤P/RP
y ≤P/RP

z with x 6= y 6= z, let

u ∈ p−1(x),

v, v′ ∈ p−1(y),

w ∈ p−1(z),

with u ≤P v, v′ ≤P w; by Lemma 3.2.3 it follows that u ≤P v′, so that u ≤P w
and finally x ≤P/RP

z.

• If x ≤P/RP
y ≤P/RP

x, there are

u, u′ ∈ p−1(x),

v, v′ ∈ p−1(y),

with u ≤P v, v′ ≤P u′; by Lemma 3.2.2 it follows that u RP v, and finally x = y.

Lemma 3.2.6. If B ∈ MC(Pn) then
⋃
a∈BJaKϕn

is a clopen subset of P/RP .

Proof. Since for each a ∈ B the set ϕ−1n (a) is clopen, it follows that
⋃
a∈B ϕ

−1
n (a) is

clopen. Let u, v ∈ P be such that u ∈
⋃
a∈B ϕ

−1
n (a) and uRPv. Then ϕn(u)RPn ϕn(v),

so ϕn(v) ∈ B, that is, v ∈
⋃
a∈B ϕ

−1
n (a). It follows that

⋃
a∈B ϕ

−1
n (a) is RP-invariant,

so
⋃
a∈BJaKϕn

= p[
⋃
a∈B ϕ

−1
n (a)] is open, thus clopen.

A converse of the above also holds.

Lemma 3.2.7. Let C be a clopen subset of P/RP . There is n ∈ N such that for all
m ≥ n, there is S ⊆ MC(Pm) for which C =

⋃
a∈

⋃
SJaKϕm

.
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Proof. First notice that it is enough to show that there are some n ∈ N and S ⊆ MC(Pn)

for which C =
⋃
a∈

⋃
SJaKϕn

. Indeed, assuming this, let m ≥ n. Then (ϕmn )−1(
⋃
S) =⋃

T for some T ⊆ MC(Pm), and C =
⋃
a∈

⋃
T JaKϕm

.
Since p−1(C) is compact and open and the sets {ϕ−1n (a) | n ∈ N, a ∈ An} form

a basis for the topology of P, there exist n ∈ N and a subset B ⊆ Pn such that
p−1(C) =

⋃
a∈B ϕ

−1
n (a), so that B = ϕn[p−1(C)].

We prove that B =
⋃
S for some S ⊆ MC(Pn). If this were not the case, there

would exist a, a′ ∈ Pn with a, a′ consecutive with respect to ≤Pn and a ∈ B, a′ /∈ B;
in particular, a R a′. If u, u′ ∈ P are such that ϕn(u) = a, ϕn(u′) = a′, u R u′, then
u ∈ p−1(C), u′ /∈ p−1(C) contradict the fact that p−1(C) is RP-invariant. The proof is
concluded by observing that:

C = p(p−1[C]) = p[
⋃
a∈B

ϕ−1n (a)] =
⋃
a∈B

JaKϕn
.

3.3 Fences

Definition 3.3.1. A fence is a compact metrizable space whose connected components
are either points or arcs. A fence Y is smooth if there is a closed partial order � on Y
whose restriction to each connected component of Y is a total order.

Figure 3.3: A fence which is not smooth: a sequence of crooked arcs converging to a
straight arc in a fashion remeniscent of a staple being deformed by the stapler.

We call arc components of a fence the connected components which are arcs, and
singleton components those which are points. Recall that a point x in a topological
space X is an endpoint if whenever x belongs to an arc [a, b] ⊆ X, then x = a or x = b

(note that under this definition singleton components are endpoints). We denote by
E(Y ) the set of endpoints of a fence Y ; equivalently, E(Y ) is the set of endpoints of the
connected components of Y . The Cantor fence is the space 2N × [0, 1]; it is a smooth
fence, as witnessed by the product of equality on 2N and the usual ordering of [0, 1]:
we denote this order by E.
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Theorem 3.3.2 below establishes that smooth fences are, up to homeomorphism, the
compact subspaces of the Cantor fence. It may be confronted with [CC89, Proposition
4], stating that smooth fans are, up to homeomorphism, the subcontinua of the Cantor
fan, which is the fan obtained by identifying in the Cantor fence the set 2N × {0} to a
point.

Recall that if X is a topological space and f : X → [0, 1] is a function, then f is
lower semi-continuous (l.s.c.) if {x ∈ X | f(x) ≤ y} is closed for each y ∈ [0, 1] and is
upper semi-continuous (u.s.c.) if {x ∈ X | f(x) ≥ y} is closed for each y ∈ [0, 1].

Let X be a zero-dimensional, compact, metrizable space and m,M : X → [0, 1] be
two functions. We say that (m,M) is a fancy pair if

• m is l.s.c.;

• M is u.s.c.;

• m(x) ≤M(x), for all x ∈ X.

If (m,M) is a fancy pair of functions on X, let DM
m = {(x, y) ∈ X × [0, 1] | m(x) ≤

y ≤M(x)}. Then DM
m is a closed subset of X × [0, 1]. Indeed, let (xn, yn) ∈ DM

m , and
(x, y) = lim(xn, yn). Then for each ε > 0, there exists n ∈ N such that for all m > n,

m(x)− ε < m(xm) ≤ yn ≤M(xm) < M(x) + ε,

so m(x) ≤ y ≤M(x), thus (x, y) ∈ DM
m .

Theorem 3.3.2. Let Y be a fence. Then the following are equivalent:

1. Y is a smooth fence.

2. There exists a closed partial order � on Y whose restriction to each connected
component is a total order and such that two elements are �-comparable if and
only if they belong to the same connected component.

3. There is a continuous injection f : Y → 2N × [0, 1].

4. There is a continuous injection f : Y → 2N× [0, 1] such that for each x ∈ 2N, the
set f [Y ] ∩ ({x} × [0, 1]) is connected (possibly empty).

5. There is a closed, non-empty, subset X of 2N and a fancy pair (m,M) of functions
on X such that Y is homeomorphic to DM

m .

Proof. The implications (2) ⇒ (1) and (4) ⇒ (3) are immediate. The implications
(3) ⇒ (1) and (4) ⇒ (2) follow by copying on Y the restriction of the order E on the
Cantor fence to the image of Y under the embedding.

For (4) ⇒ (5), let X = π1[f [Y ]] be the projection of f [Y ] on 2N and, for x ∈ X,
let m(x) = min{y ∈ [0, 1] | (x, y) ∈ f [Y ]} and M(x) = max{y ∈ [0, 1] | (x, y) ∈ f [Y ]}.
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Clearly m(x) ≤M(x), for all x ∈ X, and m,M are l.s.c, u.s.c., respectively, since f [Y ]

is closed. Then (m,M) is a fancy pair of functions on X and DM
m = f [Y ].

For (5) ⇒ (4), suppose that there are a closed, non-empty, subset X of 2N and a
fancy pair (m,M) of functions on X such that there is a homeomorphism f : Y → DM

m .
Then f is the required injection.

It thus remains to establish (1) ⇒ (4). By [Kur68, §46, V, Theorem 3], there is a
continuous map f0 : Y → 2N such that f0(x) = f0(x

′) if and only if x, x′ belong to the
same connected component.

By [Car68], any compact metrizable space with a closed partial order can be em-
bedded continuously and order-preservingly in [0, 1]N with the product order defined
by x ≤[0,1]N y if and only if for all n ∈ N, x(n) ≤ y(n). Let h : Y → [0, 1]N be such
an embedding. Let f1 : Y → [0, 1] be defined by f1(x) = d(0, h(x)), where d is the
product metric on [0, 1]N and 0 = (0, 0, . . . ). Then f1 is the composition of two con-
tinuous functions, so it is continuous, and its restriction to each connected component
of Y is injective, since d(0, x) < d(0, y) whenever x is less than y in the product order
on [0, 1]N.

Let f : Y → 2N×[0, 1] be defined by f(x) = (f0(x), f1(x)). Then f is the continuous
embedding which we were seeking.

Note that if � is the closed order on Y used for embedding Y into the Cantor fence,
the embedding f of (1)⇒ (4) in the preceding proof also embeds � in E.

For later use, we say that an order relation on the fence Y is strongly compatible if
it satisfies (2) of Theorem 3.3.2. For example, E is a strongly compatible order on the
Cantor fence.

Notice that any smooth fence Y can be given a LR-quotient structure by letting ≤Y

be a strongly compatible order on Y . When we want to stress that we are considering
a smooth fence with a strongly compatible order as a compact metrizable LR-quotient,
we write (Y,≤Y ). Since there are no immediate successors in a strongly compatible
order, it follows that (Y,≤Y ) is an H-forest.

Remark 3.3.3. Condition (2) in Theorem 3.3.2 implies that the ternary relation T on a
smooth fence Y , defined by T (x, y, x′) if and only if x = y = x′ or y belongs to the arc
with endpoints x, x′, is closed. We do not know if requiring that this relation is closed
is equivalent or strictly weaker than the conditions in Theorem 3.3.2.

3.4 Smooth fences and F0

The goal of this section is to prove that JF0K coincides with the class of smooth
fences with strongly compatible orders. One direction is Theorem 3.4.1, the other
Theorem 3.4.3.
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Theorem 3.4.1. Let (Pn, ϕ
m
n ) be a fine projective sequence in F0, with projective limit

P and let p : P→ P/RP be the quotient map. Then P/RP is a smooth fence.
The connected components of P/RP are the maximal chains of the order ≤P/RP.

They are the sets of the form p[B], where B is a maximal chain in P; in particular, if
B has more than two elements, then p[B] is an arc.

Proof. The relation ≤P/RP on P/RP is a closed order by Corollary 3.2.5.
If x 6≤P/RP

y 6≤P/RP
x, pick u ∈ p−1(x), v ∈ p−1(y) and let n ∈ N be such that

ϕn(u) � ϕn(v) � ϕn(u). This implies that ϕn(u), ϕn(v) belong to distinct maximal
chains B,B′, respectively, of Pn. Then ϕ−1n (B), ϕ−1n (B′) are clopen, RP-invariant sub-
sets of P and, in turn, p[ϕ−1n (B)], p[ϕ−1n (B′)] are clopen subsets of P/RP separating x
and y, so x, y belong to distinct connected components of P/RP .

If x ≤P/RP
y, let u, v ∈ P with u ∈ p−1(x), v ∈ p−1(y), u ≤ v. Since [u, v] is R-

connected by Lemma 3.2.1, from Lemma 1.2.5 it follows that p[[u, v]] is a connected
subset of P/RP containing x, y. Therefore x, y belong to the same connected compo-
nent.

These two facts show that the connected components of P/RP are the maximal
chains of ≤P/RP or, equivalently, the sets of the form p[B], where B ranges over the
maximal chains of P. If in particular B has more than two points, then p[B] is not a
singleton by Lemma 3.2.2.

Thus it remains to show that the non-singleton connected components of P/RP

are arcs. So let K be a non-singleton connected component of P/RP . By the above,
the restriction of ≤P/RP to K is a closed total order, so it is complete as an order by
Lemma 2.3.7, and has a minimum and a maximum that are distinct. Moreover, it is
dense as K is connected, so it is a separable order as open intervals are open subsets
in the topology of K. Using [Ros82, Theorem 2.30], the restriction of ≤P/RP to K is
an order of type 1 + λ + 1, where λ is the order type of R; as the sets of the form
{x ∈ K | x <P/RP

z} and {x ∈ K | z <P/RP
x} are open subsets of K, this means that

there is a continuous bijection K → [0, 1], which is therefore a homeomorphism.

The converse of Theorem 3.4.1 is proved in Corollary 3.4.4, for which we need the
following lemma and definition.

Lemma 3.4.2. Let X be a zero-dimensional compact metrizable space and (m,M) a
fancy pair of functions on X. For each ε > 0 and each clopen partition U of X there
is a clopen partition W refining U , such that for all U ∈ W there is xU ∈ U such that:

m(xU )−min{m(x) | x ∈ U} < ε, max{M(x) | x ∈ U} −M(xU ) < ε. (3.1)

Proof. By dealing with one element of U at a time, it is enough to show that given a
zero-dimensional compact metrizable space X, a fancy pair (m,M), and ε > 0, there
is a clopen partition W = {W0, . . . ,Wk} of X such that for all U ∈ W there is xU ∈ U
for which (3.1) holds.
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For any clopen set U ⊆ X, let

mU = min{m(x) | x ∈ U}, MU = max{M(x) | x ∈ U}.

If there exists xX ∈ X satisfying (3.1), then we are done by letting k = 0,W0 = X.
Otherwise, let U0 = {x ∈ X | M(x) < MX − ε

2}. This is an open set, and since there
is no xX satisfying (3.1), it contains the closed, non-empty, set C0 = {x ∈ X | m(x) ≤
mX + ε

2}. By the zero-dimensionality of X and the compactness of C0, let V0 be clopen
such that C0 ⊆ V0 ⊆ U0. Notice that

mV0 = mX , MV0 < MX −
ε

2
.

If there exists xV0 ∈ V0 such that (3.1) holds, then set W0 = V0. Otherwise repeat the
process within V0, to find a clopen set V1 with C0 ⊆ V1 ⊆ V0 and

mV1 = mV0 = mX , MV1 < MV0 −
ε

2
< MX − ε.

Thus this process must stop, yielding finally a clopen subset W0 such that C0 ⊆W0 ⊆
U0 and there exists xW0 ∈W0 for which (3.1) holds.

Now start the process over again within X ′ = X \W0, which is non-empty by case
assumption. Since C0 ⊆W0 ⊆ U0, it follows that

mX +
ε

2
< mX′ , MX′ = MX .

If there exists xX′ ∈ X ′ satisfying (3.1), we are done by letting k = 1,W1 = X ′.
Otherwise we eventually produce a clopen subset W1 of X ′ containing C1 = {x ∈
X ′ | m(x) ≤ mX′ +

ε
2}, contained in U1 = {x ∈ X ′ |M(x) < MX′ − ε

2}, and such that
there exists xW1 ∈W1 satisfying (3.1). Set X ′′ = X \ (W0 ∪W1) and notice that

mX + ε < mX′ +
ε

2
< mX′′ , MX′′ = MX .

Thus the process eventually stops, providing the desired partition W.

Theorem 3.4.3. Let (Y,≤Y ) be a smooth fence with a strongly compatible order. Then
there is a F0-suitable sequence of regular quasi partitions of (Y,≤Y ).

Together with Theorem 3.4.1 it follows that JF0K coincides with the class of smooth
fences (with strongly compatible orders). By Proposition 1.4.3, we have the following
corollary.

Corollary 3.4.4. Let (Y,≤Y ) be a smooth fence with a strongly compatible order. There
exists a fine projective sequence of structures (Pn, ϕ

m
n ) from F0 closely approximating

(Y,≤Y ) in such a way that for each n ∈ N, a, a′ ∈ Pn, it holds that a ≤Pn a′ if and
only if there are x ∈ int(JaKϕn

), x′ ∈ int(Ja′Kϕn
), x ≤Y x′.
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Proof of Theorem 3.4.3. By Theorem 3.3.2 and the remark following it, we can assume
that Y = DM

m for a closed, non-empty X ⊆ 2N and a fancy pair (m,M) of functions on
X, such that ≤Y coincides with the product order E on X× [0, 1]. We can furthermore
assume that m(x) > 0,M(x) < 1 for all x ∈ X. Let d be the product metric on
X × [0, 1].

We first define a homeomorphic copy Y ′ = DM ′
m′ of Y in X × (0, 1) and a sequence

(Un)n∈N of partition of X such that for any n ∈ N and U ∈ Un, there is xU ∈ U such
that:

m′(xU ) = min{m′(x) | x ∈ U}, M ′(xU ) = max{M ′(x) | x ∈ U}.

This allows us to find a sequence of regular quasi-partitions of Y ′ which in turn give
rise to the Pn’s.

Let U0 = {X} be the trivial clopen partition of X and β0 : X× [0, 1]→ X× [0, 1] be
the identity. Suppose one has defined a clopen partition Un of X and a homeomorphism
βn : X × [0, 1] → X × [0, 1]. Let mn,Mn be such that DMn

mn = βn[Y ]. For any clopen
set U ⊆ X, denote

mn
U = min

x∈U
mn(x), Mn

U = max
x∈U

Mn(x).

Let Un+1 refine Un, have mesh less than 1
n+1 , and satisfy Lemma 3.4.2 for βn[Y ] and

ε = 1/2n+1. For each U ∈ Un+1 fix xU given by Lemma 3.4.2, additionally we can ask
that if mn

U < Mn
U , then m

n(xU ) < Mn(xU ).

For any ` ∈ N and any two increasing sequences of real numbers 0 < a0 < · · · <
a`−1 < 1 and 0 < b0 < · · · < b`−1 < 1, let P~b~a : [0, 1] → [0, 1] be the piecewise linear
function mapping 0 7→ 0, 1 7→ 1, ai 7→ bi for each i < `:

P
~b
~a(y) =



b0
a0
y if y ≤ a0,

bi+1 − bi
ai+1 − ai

y +
biai+1 − aibi+1

ai+1 − ai
if ai < y ≤ ai+1, i < `− 1,

1− b`−1
1− a`−1

y +
b`−1 − a`−1

1− a`−1
if y > a`−1.

Note that, for fixed `, this is a continuous function of the variables a0, . . . , a`−1, y.

If for each x ∈ U , mn(x) = Mn(x), then mn
U = Mn

U : U → [0, 1] is a continuous
function, as it is both l.s.c. and u.s.c.. If follows that if we fix xU ∈ U and define
αU : U×[0, 1]→ U×[0, 1] as αU (x, y) =

(
x, P

mn(xU )
mn(x) (y)

)
, then αU is a homeomorphism.

Notice that, in this case, αU sends βn[Y ]∩(U× [0, 1]) onto U×{mn(xU )}; in particular,
if βn[Y ] ∩ (U × [0, 1]) = U × {mn(xU )}, then αU is the identity.

If, on the other hand, xU ∈ U is such that mn(xU ) < Mn(xU ), we define the

50



functions fU , gU , f ′U , g
′
U : U → (0, 1) as follows.

fU (x) =

mn
U if x 6= xU

mn(xU ) if x = xU

gU (x) = min{mn(x),mn(xU )}

f ′U (x) =

Mn
U if x 6= xU

Mn(xU ) if x = xU

g′U (x) = max{Mn(x),Mn(xU )}

It is immediate by their definitions that fU , g′U are u.s.c., gU , f ′U are l.s.c., and that:

mn
U ≤ fU ≤ gU ≤ mn(xU ) < Mn(xU ) ≤ g′U ≤ f ′U ≤Mn

U .

By the Katětov–Tong insertion theorem there are hU , h′U : U → (0, 1) continuous, such
that fU ≤ hU ≤ gU and g′U ≤ h′U ≤ f ′U .

We define αU : U × [0, 1]→ U × [0, 1] to be:

αU (x, y) =
(
x, P

mn
U ,M

n
U

hU (x),h′U (x)
(y)
)
.

Then αU is a homeomorphism.
Define αn =

⊔
U∈Un+1

αU , so αn ∈ Homeo(X × [0, 1]). Finally let βn+1 = αnβn and
mn+1,Mn+1 be such that βn+1[Y ] = DMn+1

mn+1 . Notice that for any U ∈ Un+1

mn+1(xU ) = mn
U = mn+1

U and Mn+1(xU ) = Mn
U = Mn+1

U . (3.2)

Let (x, y), (x, y′) ∈ βn[Y ], and suppose that x ∈ U ∈ Un+1, y ≤ y′. Then mn
U ≤

hU (x) ≤ y ≤ y′ ≤ h′U (x) ≤Mn
U so:

P
mn

U ,M
n
U

hU (x),h′U (x)
(y′)− Pm

n
U ,M

n
U

hU (x),h′U (x)
(y) =

Mn
U −mn

U

h′U (x)− hU (x)
(y′ − y) ≥ y′ − y,

that is, d((x, y), (x, y′)) ≤ d(αU (x, y), αU (x, y′)). It follows that for (x, y), (x, y′) ∈ Y :

d((x, y), (x, y′)) ≤ d(βn+1(x, y), βn+1(x, y
′)). (3.3)

We prove that the sequence (βn)n∈N is Cauchy with respect to the supremum metric
dsup. Indeed, for each n, dsup(id, αn) < 1/2n+1 by the definition of the points xU . By
right invariance of the supremum metric and the triangle inequality, whenever n < m,

dsup(βn, βm) = dsup(βn, αm−1 · · ·αnβn) = dsup(id, αm−1 · · ·αn) ≤

≤ dsup(id, αm−1) + · · ·+ dsup(id, αn) <
m∑

i=n+1

1/2i < 1/2n.
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It follows that for each ε, there is n such that for each m > n, dsup(βn, βm) < ε.
Since the space of continuous functions from X × [0, 1] in itself with the supremum

metric is complete, the sequence (βn)n∈N has a limit, which we denote by β. Since it
is the limit of surjective functions, β is surjective. We prove that it is injective on Y ,
that is, that its restriction to Y is a homeomorphism onto Y ′ = β[Y ].

Let (x, y), (x′, y′) ∈ Y . If x 6= x′, then β(x, y) 6= β(x′, y′) as β is the identity on the
first coordinate. So suppose x = x′. Since (3.3) holds for each n ∈ N, we have that
d((x, y), (x, y′)) ≤ d(β(x, y), β(x, y′)), so β is injective on Y .

By (3.2) it follows that Y ′ ⊆ X× [mX ,MX ] ⊆ X× (0, 1). Notice that x E x′ if and
only if β(x) E β(x′). Let m′,M ′ be such that DM ′

m′ = Y ′. For any n ∈ N and U ∈ Un+1,
m′(xU ) = m′U and M ′(xU ) = M ′U . This is clear if m

n
U = Mn

U . Otherwise, we have
seen that mn+1(xU ) = mn+1

U . Assume that mr(xU ) = mr
U for some r ≥ n + 1. Given

any U ′ ∈ Ur+1 with U ′ ⊆ U , by (3.2) it follows that mr(xU ) ≤ mr
U ′ = mr+1

U ′ , whence
mr(xU ) = mr

U = mr+1
U and, in particular, ∀r ≥ n + 1 mr(xU ) = mn+1(xU ) = mr

U ,
which allows to conclude m′(xU ) = mn+1(xU ) = m′U . Similarly, M ′(xU ) = M ′U .

Let KU = {(xU , y) | m′U ≤ y ≤M ′U} = ({xU} × [0, 1]) ∩ Y ′.
Let x0 = 0, x1 = 1. Let Θ =

{
xm/2n

∣∣ n ≥ 1, 1 ≤ m < 2n
}

be a countable dense
subset of (0, 1) \ {mU ,MU | U ∈ Un, n ∈ N}, indexed in such a way that xp < xq if and
only if p < q.

For n ≥ 0, let:

In =
{[
xm/2n , x(m+1)/2n

] ∣∣ 0 ≤ m ≤ 2n − 1
}
.

Then define:
Cn = {U × I | U ∈ Un, I ∈ In}.

Notice that for each n:

1. Cn is a regular quasi-partition of X × [0, 1];

2. ∀C ∈ Cn+1 ∃!C ′ ∈ Cn C ⊆ C ′;

3. The mesh of Cn tends to 0 as n grows, since Θ is dense and the mesh of Un goes
to 0.

Endow each Cn with the discrete topology and give Cn an LR-structure by letting

• C RCn C ′ if and only if C ∩ C ′ 6= ∅,

• C ≤Cn C ′ if and only if there are x ∈ int(C), x′ ∈ int(C ′) with x E x′.

Then Cn ∈ F0. Notice that C,C ′ are ≤Cn-comparable if and only if π1[C] = π1[C
′],

where π1 is the projection onto X.
For each n, define Pn = {C ∈ Cn | C ∩ Y ′ 6= ∅}, and have it inherit the LR-structure

of Cn. Let Dn =
{
β−1(C ∩ Y ′)

∣∣ C ∈ Pn} . We prove that Pn ∈ F0, Dn is Pn-like, and
(Dn)n∈N is a F0-suitable sequence of (Y,≤Y ).
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Claim 3.4.4.1. For each C ∈ Pn, int(C) ∩Kπ1[C] 6= ∅.

Proof. Let (x, y) ∈ C ∩Y ′. As m′(xπ1[C]) = m′π1[C] and M
′(xπ1[C]) = M ′π1[C], it follows

that (xπ1[C], y) ∈ C ∩ Kπ1[C]. The projections of endpoints of Kπ1[C] on the second
coordinate do not belong to Θ, so int(C) ∩Kπ1[C] 6= ∅.

Claim 3.4.4.2. {C ∩ Y ′ | C ∈ Pn} is a regular quasi-partition of Y ′.

Proof. We first show that Pn is a covering of Y ′: given (x, y) ∈ Y ′, let U ∈ Un be such
that x ∈ U ; then m′(xU ) ≤ y ≤ M ′(xU ), so that (xU , y) ∈ KU . If I ∈ In is such that
y ∈ I, then (x, y) ∈ U × I ∈ Pn.

We show that for each C ∈ Pn, C ∩ Y ′ is regular in Y ′, that is, that

clX×[0,1](intX×[0,1](C) ∩ Y ′) = C ∩ Y ′.

Let (x, y) ∈ C ∩ Y ′ and O be an open neighborhood of (x, y) in X × [0, 1]. There
exist m > n and C ′ ∈ Pm such that y ∈ C ′ ⊆ O and C ′ ∩ C. By Claim 3.4.4.1
int(C ′) ∩Kπ1[C′] 6= ∅, so O ∩ int(C) ∩ Y 6= ∅, and we are done.

If C,C ′ ∈ Pn are distinct, by item 1 above, C ∩ C ′ ∩ Y ′ ⊆ ∂(C) ∩ ∂(C ′) ∩ Y ′ ⊆
∂Y ′(C ∩ Y ′) ∩ ∂Y ′(C ′ ∩ Y ′), so it is a quasi-partition.

Claim 3.4.4.3. {C ∩ Y ′ | C ∈ Pn} is Pn-like.

Proof. (A0) holds by Claim 3.4.4.2. If C,C ′ ∈ Pn are such that C RPn C ′, then
C RCn C ′, which in particular entails that π1[C] = π1[C

′]. So C ∩ C ′ ∩Kπ1[C] 6= ∅ and
thus C ∩ C ′ ∩ Y ′ 6= ∅. If C ∩ C ′ ∩ Y ′ 6= ∅ then C ∩ C ′ 6= ∅ so C RCn C ′ and finally
C RPn C ′. Therefore (A1) holds.

Let (x, y) ≤Y ′ (x, y′). If C,C ′ ∈ Pn are such that (x, y) ∈ C, (x, y′) ∈ C ′, then
C ≤Cn C ′ by definition of ≤Cn and therefore C ≤Pn C ′, which takes care of (A2).

Let C,C ′ ∈ Pn, be such that C ≤Pn C ′. Then π1[C] = π1[C
′], and by Claim 3.4.4.1

there are (x, y) ∈ int(C) ∩ Kπ1[C], (x, y
′) ∈ int(C ′) ∩ Kπ1[C], with (x, y) ≤Y ′ (x, y′).

Thus (A3) holds.

Claim 3.4.4.4. Pn ∈ F0

Proof. Suppose C,C ′ ∈ Pn and D ∈ Cn with C ≤Cn D ≤Cn C ′. Then Kπ1[D] ∩D 6= ∅,
so D ∈ Pn. Therefore Pn is a ≤Cn-convex substructure of Cn, so Pn ∈ F0.

By Lemma 1.2.7, Dn is Pn-like, since β Y is an isomorphism. From Items 2 and 3
above and the fact that β Y is an isomorphism, it follows that Dn+1 refines Dn and
that the mesh goes to 0, which concludes the proof.
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As mentioned in the introduction, in [BK15] the Lelek fan is obtained as a quotient
of the projective Fraïssé limit of a subclass of F . In particular, the Lelek fan is approx-
imable by a fine projective sequence from F . We therefore raise the following question,
an answer to which would involve proving analogs of Theorems 3.4.1 and 3.4.3 for F .

Question 3.4.5. What is the class of spaces which are approximable by fine projective
sequences from F?

3.5 Spaces of endpoints of smooth fences

Given a smooth fence (Y,≤Y ) with a strongly compatible order, let L(Y,≤Y ),
U(Y,≤Y ) be the space of ≤Y -minimal points of Y and the space of ≤Y -maximal
points of Y , respectively. By the definition of a strongly compatible order, in these sets
are contained all endpoints of Y :

E(Y ) = L(Y,≤Y ) ∪ U(Y,≤Y ).

Notice that x ∈ L(Y,≤Y ) ∩ U(Y,≤Y ) if and only if {x} is a connected component of
Y . When the order ≤Y is clear from context we suppress the mention of it in L(Y,≤Y )

and U(Y,≤Y ).

Remark 3.5.1. By Theorem 3.3.2, Y is homeomorphic to DM
m for some fancy pair

(m,M) of functions with domain a closed subset of 2N. It follows that L(Y,≤Y ),
U(Y,≤Y ) are homeomorphic to the graphs of m,M , respectively.

In this subsection we establish some topological properties of spaces of endpoints
of smooth fences. In particular, we concentrate on the spaces L(Y,≤Y ), U(Y,≤Y ),
L(Y,≤Y ) ∩ U(Y,≤Y ). We therefore fix a smooth fence (Y,≤Y ) with a strongly com-
patible order. By Corollary 3.4.4 we can assume that Y = P/RP for some fine pro-
jective sequence (Pn, ϕ

m
n ) in F0 with projective limit P, and that ≤Y is ≤P/RP . Let

p : P→ P/RP be the quotient map.

Lemma 3.5.2. A point u ∈ P is ≤P-maximal if and only if for any n ∈ N there exists
m > n such that ϕmn (max{a ∈ Pm | ϕm(u) ≤ a}) = ϕn(u), and u ∈ P is ≤P-minimal if
and only if for any n ∈ N there existsm > n such that ϕmn (min{a ∈ Pm | a ≤ ϕm(u)}) =

ϕn(u).

Proof. Suppose u is ≤P-maximal and fix n ∈ N. For m > n, let bm = max{a ∈
Pm | ϕm(u) ≤ a}. If for every m > n it holds that ϕmn (bm) > ϕn(u), let vm ∈
ϕ−1m (bm), um ∈ ϕ−1m (ϕm(u)) be such that um ≤ vm. A subsequence vmk

converges to
some v. It follows that u ≤P v, as u = limm→∞ um and the order is closed, and u 6= v

as ϕn(vm) 6= ϕn(u), for any m > n, a contradiction with the maximality of u.
Conversely, let u ∈ P be such that for each n ∈ N there exists m > n such that

ϕmn (max{a ∈ Pm | ϕm(u) ≤ a}) = ϕn(u) and let u ≤P v. Fix n, with the objective of

54



showing ϕn(u) = ϕn(v). Let m > n satisfy the hypothesis; notice that it implies that
ϕmn [{a ∈ Pm | ϕm(u) ≤ a}] = {ϕn(u)}. From u ≤ v it follows that ϕm(u) ≤ ϕm(v) so
ϕn(v) = ϕmn ϕm(v) = ϕn(u).

The case of u ≤P-minimal is symmetrical.

Corollary 3.5.3. Given x ∈ U (Y ) and any open neighborhood O of x in Y , for m
big enough the following holds: if Bm ∈ MC(Pm) is such that x ∈

⋃
a∈Bm

JaKϕm
, then

JmaxBmKϕm
⊆ O. Consequently, limm→∞JmaxBmKϕm

= {x}.
The same holds for x ∈ L (Y ), upon changing max to min.

Proof. Let u = max p−1(x) and n ∈ N be such that Jϕn(u)Kϕn
⊆ O. By Lemma 3.5.2

there is m > n such that ϕmn (maxBm) = ϕn(u), for Bm ∈ MC(Pm) with ϕm(u) ∈ Bm.
This implies that for all m′ ≥ m if Bm′ ∈ MC(Pm′) is such that ϕm′(u) ∈ Bm′ then
ϕm

′
n (maxBm′) = ϕn(u). It follows that eventually JmaxBmKϕm

⊆ Jϕn(u)Kϕn
⊆ O.

Corollary 3.5.4. For any connected component K ⊆ Y and any open neighborhood O
of K in Y , there are m ∈ N, B ∈ MC(Pm) such that K ⊆

⋃
a∈BJaKϕm

⊆ O.

Proof. It can be assumed that O 6= Y . Fix a compatible metric on Y and let δ be the
distance betweenK and Y \O. Let u = min p−1(K), v = max p−1(K) and n ∈ N be such
that the mesh of JPnKϕn

is less than δ, so that if a ∈ Pn is such that JaKϕn
∩K 6= ∅, then

JaKϕn
⊆ O. By Lemma 3.5.2 there arem′ > n and B′ ∈ MC(Pm′) with ϕm′(u) ∈ B′ and

ϕm
′

n (minB′) = ϕn(u). By a second application of Lemma 3.5.2, there are m > m′, B ∈
MC(Pm) such that ϕm(v) ∈ B,ϕmm′(maxB) = ϕm′(v), so ϕmn (maxB) = ϕn(v). Since
ϕmm′(minB) ≥ minB′, it follows that ϕmn (minB) ≥ ϕm

′
n (minB′) = ϕn(u) by virtue of

ϕm
′

n being an epimorphism. If a ∈ B, then ϕn(u) ≤ ϕmn (a) ≤ ϕn(v), so Jϕmn (a)Kϕn
∩K 6=

∅, hence JaKϕm
⊆ Jϕmn (a)Kϕn

⊆ O. It follows that
⋃
a∈BJaKϕm

⊆ O.

Proposition 3.5.5. Each point of L(Y ) ∩ U(Y ) has a basis of neighborhoods in Y

consisting of clopen sets. In particular, the space L(Y ) ∩ U(Y ) is zero-dimensional.

Proof. Let x ∈ L(Y ) ∩ U(Y ) and O be an open neighborhood of x in Y . By Corol-
lary 3.5.4 there exist n ∈ N and B ∈ MC(Pn) such that x ∈

⋃
a∈BJaKϕn

⊆ O. By
Lemma 3.2.6,

⋃
a∈BJaKϕn

is clopen in Y and so its trace in L(Y ) ∩ U(Y ) is clopen in
L(Y ) ∩ U(Y ).

Since L(Y ) and U(Y ) are homeomorphic to graphs of semi-continuous functions
with a zero-dimensional domain, by [DvM10, Remark 4.2] we have the following:

Proposition 3.5.6. The spaces L(Y ) and U(Y ) are almost zero-dimensional.

Lemma 3.5.7. The spaces L(Y ),U(Y ) are Polish.
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Proof. The set U(Y ) = {x ∈ Y | ∀y ∈ Y, y ≤Y x ∨ (x 6≤Y y ∧ y 6≤Y x)} is the co-
projection of {(x, y) | y ≤Y x ∨ (x 6≤Y y ∧ y 6≤Y x)}, which is the union of a closed
set and an open set of Y 2, since ≤Y is closed. A union of a closed set and an open
set is Gδ and since Y is compact, the co-projection of an open set is open. Finally, as
co-projection and intersection commute, the co-projection of a Gδ is Gδ. We conclude
that U(Y ) is a Gδ subset of Y , thus is Polish.

Similarly for L(Y ).

Corollary 3.5.8. The spaces E(Y ) and L(Y ) ∩ U(Y ) are Polish.

Remark 3.5.9. The spaces L(Y )\U(Y ) and U(Y )\L(Y ) are strongly σ-complete spaces
(that is, they are union of countably many closed and completely metrizable subspaces),
since they are Fσ subsets of a Polish space.
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Chapter 4

The Fraïssé fence

We denote by F the projective Fraïssé limit of F . Recall from Corollary 3.1.9 that
F0 is a projective Fraïssé family, with the same projective Fraïssé limit as F . Therefore,
for the remainder of this chapter we fix a fundamental sequence (Fn, γ

m
n ) in F0, with

F0 consisting of a single element.

Proposition 4.0.1. F is a close prespace.

Proof. We show that the sequence (Fn, γ
m
n ) is fine and the quotient map p : F→ F/RF

is irreducible. Let a, b ∈ Fn have RFn-distance 2. Say, without loss of generality,
a RFn c RFn b and a <Fn c <Fn b. Consider P ∈ F0 obtained by Fn by blowing c up to
two points. More precisely, let c0, c1 be two new elements, let P = (Fn \{c})∪{c0, c1},
and define ≤P , RP by extending the corresponding relations on Fn \ {c} requiring
a <P c0 <

P c1 <
P b, a RP c0 R

P c1 R
P b. Let ϕ : P → Fn be defined by:

ϕ(d) =

d if d ∈ Fn,

c if d ∈ {c0, c1}.

Then ϕ is an epimorphism by Lemma 3.1.8, and by (F2) there exist m > n and an
epimorphism θ : Fm → P such that ϕθ = γmn . Let a′ ∈ (γmn )−1(a), b′ ∈ (γmn )−1(b),
then θ(a′) = a, θ(b′) = b. If there was c′ ∈ Fm such that a′ RFm c′ RFm b′, then θ(c′)
should be RP -connected to a and b, but no such element exists in P . By Lemma 1.2.3,
(Fn, γ

m
n ) is therefore fine.

To prove irreducibility of the quotient map, by Lemma 1.3.4 it suffices to show
that for each n ∈ N and a ∈ Fn there are m > n and b ∈ Fm such that b′ RFm b

implies γmn (b′) = a. To this end fix n, a as above and define P = Fn t {a0, a1, a2}
with a0 RP a1 RP a2 and a0 <P a1 <

P a2, so that {a0, a1, a2} ∈ MC(P ) and P ∈ F0.
Let ϕ : P → Fn be the identity restricted to Fn and ϕ(ai) = a for 0 ≤ i ≤ 2. By
Lemma 3.1.8, ϕ is an epimorphism and by (F2) there exist m > n and an epimorphism
θ : Fm → P such that ϕθ = γmn . Let b ∈ θ−1(a1) and b′RFm b, then θ(b′) ∈ {a0, a1, a2},
so γmn (b) = a.

59



4.1 A topological characterization

The study of the quotient F/RF is the main goal of this chapter. By Theorem 3.4.1,
F/RF is a smooth fence. We call Fraïssé fence any space homeomorphic to F/RF .

The following property of the Fraïssé fence is of crucial importance for its charac-
terization. In particular it implies that JFnKγn is Fn-like, and thus that (JFnKγn)n∈N is
a F0-suitable sequence of the Fraïssé fence.

Lemma 4.1.1. Let ϕ : F → P be an epimorphism onto some P ∈ F0. If a, a′ ∈ P
with a ≤ a′, there is an arc component of F/RF whose endpoints belong to int(JaKϕ),
int(Ja′Kϕ), respectively.

Proof. Let a1, . . . , a` ∈ P be such that

a <P a1 <
P . . . <P a` <

P a′,

a RP a1R
P . . . RP a` R

P a′.

Notice that ` = 0 if a RP a′, in particular when a = a′.
Let Q = P t {b, c, d1, . . . , d`, b′, c′} ∈ F0, where

b <Q c < d1 <
Q . . . <Q d` <

Q b′ <Q c′,

b RQ c RQ d1R
Q . . . RQ d` R

Q b′ RQ c′,

such that {b, c, d1, . . . , d`, b′, c′} ∈ MC(Q). Let ψ : Q→ P be the epimorphism defined
as the identity on P and by letting

ψ(b) = ψ(c) = a,

ψ(d1) = a1,

. . .

ψ(d`) = a`,

ψ(b′) = ψ(c′) = a′.

By (L3′) there is an epimorphism θ : F → Q such that ϕ = ψθ. Let u, u′ ∈ F with
θ(u) = b, θ(u′) = c′, u ≤F u′. Let v ∈ F be minimal with v ≤F u. If w RF v, then
θ(w) is either b or c, so ϕ(w) = a; similarly, if v′ ∈ F is maximal with u′ ≤F v′, and
w′RF v′ then ϕ(w′) = a′. So, by Lemma 1.3.8, p(v) ∈ int(JaKϕ), p(v′) ∈ int(Ja′Kϕ). This
implies that the connected component with endpoints p(v), p(v′) has the property we
are looking for.

The following theorem gives a topological characterization of the Fraïssé fence.

Theorem 4.1.2. A smooth fence Y is a Fraïssé fence if and only if for any two open
sets O,O′ ⊆ Y which meet a common connected component there is an arc component
of Y whose endpoints belong to O,O′, respectively.

60



Figure 4.1: A representation of the characteristic property of the Fraïssé Fence.

The following lemmas are used in the proof of Theorem 4.1.2.

Lemma 4.1.3. Let A,B,B′ be HLOs and let ϕ : B → A and ψ : B′ → A be LR-
preserving maps such that ψ[B′] ⊆ ϕ[B]. Let a0 = ψ(minB′), a1 = ψ(maxB′) and
r = max

{∣∣ϕ−1(a)
∣∣ ∣∣ a ∈ A}. If

∣∣ψ−1(a)
∣∣ ≥ r for each a ∈ ψ[B′] \ {a0, a1}, then there

exists an LR-preserving map θ : B′ → B such that ϕθ = ψ. Moreover:

1. if ψ[B′] = ϕ[B] and
∣∣ψ−1(a0)∣∣, ∣∣ψ−1(a1)∣∣ ≥ r, then θ can be chosen to be surjec-

tive;

2. if ψ[B′] = ϕ[B] and
∣∣ϕ−1(a0)∣∣ =

∣∣ϕ−1(a1)∣∣ = 1, then θ can be chosen to be
surjective;

3. if a ∈ A, b ∈ ϕ−1(a), b′ ∈ ψ−1(a) and

min
{∣∣{c ∈ B′ ∣∣ ψ(c) = a, c < b′

}∣∣, ∣∣{c ∈ B′ ∣∣ ψ(c) = a, c > b′
}∣∣} ≥ r − 1,

then θ can be chosen such that θ(b′) = b.

Proof. For each a ∈ ψ[B′] \ {a0, a1} let θ map ψ−1(a) to ϕ−1(a) surjectively and
monotonically. If ψ[B′] = ϕ[B] and

∣∣ψ−1(a0)∣∣, ∣∣ψ−1(a1)∣∣ ≥ r, doing the same for
ψ−1(a0), ψ

−1(a1) provides a map onto B. Otherwise, map all of ψ−1(a0) to the maximal
element of ϕ−1(a0), and all of ψ−1(a1) to the minimal element of ϕ−1(a1). In the
hypothesis of point (2), this produces a surjective map on B.

As for point (3), map {c ∈ B′ | ψ(c) = a, c ≤ b′}, {c ∈ B′ | ψ(c) = a, c ≥ b′} mono-
tonically onto {c ∈ B | ϕ(c) = a, c ≤ b}, {c ∈ B | ϕ(c) = a, c ≥ b}, respectively, so in
particular θ(b′) = b.

Lemma 4.1.4. Let (Pn, ϕ
m
n ) be a fine projective sequence in F0, with projective limit

P, and the quotient map p : P → P/RP be irreducible. Let J1, . . . , J ` be connected
components of P/RP . For each n ∈ N and 1 ≤ i ≤ `, let J in = ϕn[p−1(J i)] and
Bi
n ∈ MC(Pn) be such that J in ⊆ Bi

n. For any n, r ∈ N, if the endpoints of the J i’s
belong to

⋃
a∈Pn

int(JaKϕn
), there is m0 > n such that, for each m ≥ m0 and 1 ≤ i ≤ `:
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(a) ϕmn [Bi
m] = J in,

(b) if J i is an arc, then
∣∣J im ∩ (ϕmn )−1(a)

∣∣ > r for each a ∈ J in.

Proof. We can suppose that the J i’s are distinct. Let O1, . . . , O` be pairwise disjoint
open neighborhoods of J1, . . . , J `, respectively, such that Oi ⊆

⋃
a∈Ji

n
JaKϕn

, for 1 ≤ i ≤
`. By Corollary 3.5.4, there is m′ > n such that for 1 ≤ i ≤ `, one has

⋃
a∈Bi

m′
JaKϕm′

⊆
Oi, that is, ϕm′n [Bi

m′ ] = J in. It follows that for all m > m′ and 1 ≤ i ≤ `, one has
ϕmn [Bi

m] = J in. For 1 ≤ i ≤ ` such that J i is an arc, and each a ∈ J in, the set JaKϕn
∩J i

has more than one element; since the mesh of JPmKϕm
goes to 0, there exists m0 > m′

such that for all m > m0 condition (b) is satisfied.

Proof of Theorem 4.1.2. For the forward implication, it suffices to prove the conclusion
for F/RF . Let O,O′ ⊆ F/RF be open sets which meet a common connected component
K. Let n ∈ N, a, a′ ∈ Fn be such that

JaKγn ⊆ O,
q
a′

y
γn
⊆ O′, int(JaKγn) ∩K 6= ∅ 6= int(

q
a′

y
γn

) ∩K.

It follows that a, a′ are ≤Fn-comparable, so by Lemma 4.1.1 there is an arc component
J of F/RF whose endpoints belong to int(JaKγn), int(Ja′Kγn), respectively, and so to
O,O′, respectively.

Conversely, assume that for any open sets O,O′ ⊆ Y meeting a common connected
component there is an arc component of Y whose endpoints belong to O,O′, respec-
tively. Let ≤Y be a strongly compatible order on Y . Let (Pn, ϕ

m
n ) be the projective

sequence given by Corollary 3.4.4, and let Y be its projective limit.
It is then enough to prove that Y is a projective Fraïssé limit of F0. To this

end, by Proposition 1.1.2, we must prove that given P ∈ F0 and an epimorphism
ϕ : P → Pn, there are m ≥ n and an epimorphism ψ : Pm → P such that ϕψ = χmn .
Let r = max

{
|ϕ−1(C)|

∣∣ C ∈ Pn} and B1, . . . , B` be an enumeration of MC(P ).
From minBi ≤P maxBi it follows that ϕ(minBi) ≤Pn ϕ(maxBi), for 1 ≤ i ≤ `.

There is a connected component of Y which meets the interior of both
q
ϕ(minBi)

y
ϕn

,q
ϕ(maxBi)

y
ϕn

, so by hypothesis there is an arc component J i of Y whose endpoints
belong to int

q
ϕ(minBi)

y
ϕn

, int
q
ϕ(maxBi)

y
ϕn

, respectively. Notice that if j 6= i

is such that ϕ[Bj ] = ϕ[Bi], one can find a connected component J j disjoint from
J i, by applying the hypothesis to a couple of open sets O ⊆

q
ϕ(minBi)

y
ϕn
, O′ ⊆q

ϕ(maxBi)
y
ϕn

which intersect J i but avoid its endpoints.
By Lemma 4.1.4 there is m0 > n such that for all m ≥ m0 there are A1, . . . , A` ∈

MC(Pm) distinct such that one has ϕmn [Ai] = ϕ[Bi] and
∣∣Ai ∩ (ϕmn )−1(U)

∣∣ ≥ r, for
each 1 ≤ i ≤ `, and U ∈ ϕ[Bi].

On the other hand, since ϕ is an epimorphism, for m big enough it holds that
for all A ∈ MC(Pm) there is BA ∈ MC(P ) such that ϕmn [A] ⊆ ϕ[BA] and, for every
U ∈ ϕmn [A], one has

∣∣(ϕmn )−1(U) ∩A
∣∣ ≥ r.
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So fix such anm, greater or equal tom0. We construct an epimorphism ψ : Pm → P

such that ϕψ = ϕmn , by defining its restriction on each A ∈ MC(Pm). For 1 ≤ i ≤ `, we
use Lemma 4.1.3 to construct an LR-preserving function ψi from Ai onto Bi such that
ϕψi = ϕmn Ai . Then, for each A ∈ MC(Pm)\{Ai | 1 ≤ i ≤ `}, we again use Lemma 4.1.3
to find an LR-preserving function ψA from A to BA such that ϕψA = ϕmn A. Then,
defining ψ =

⋃`
i=1 ψi ∪

⋃
A∈MC(Pm)\{Ai|1≤i≤`} ψA, it follows that ϕψ = ϕmn and, by

Lemma 3.1.8, ψ is an epimorphism.

4.2 Homogeneity properties

In this section we study some homogeneity properties of the Fraïssé fence, describing
in particular its orbits under homeomorphisms. Recall that Aut(F/RF ) is the subgroup
of Homeo(F/RF ) of homeomorphisms which preserve ≤F/RF .

Theorem 4.2.1. Let J1, . . . , J `, I1, . . . , I` be tuples of distinct connected components
of F/RF . Suppose that J1, . . . , Jk, I1, . . . , Ik are arc components and Jk+1, . . . , J `,
Ik+1, . . . , I` are singletons, for some k with 0 ≤ k ≤ `. For 1 ≤ i ≤ k, let xi ∈
J i, yi ∈ Ii be points which are not endpoints. Then there is h ∈ Aut(F/RF ) such that
h[J i] = Ii, for 1 ≤ i ≤ `, and h(xi) = yi for 1 ≤ i ≤ k.

We obtain Theorem 4.2.1 by proving in Lemma 4.2.3 a strengthening of the converse
of Proposition 1.1.2 for (Fn, γ

m
n ) and using it in a back-and-forth argument which yields

the desired isomorphism.

Lemma 4.2.2. Let (Pn, ϕ
m
n ) be a fine projective sequence in F0, with projective limit

P, and the quotient map p : P → P/RP be irreducible. Let x ∈ P/RP be such that
p−1(x) is a singleton which is neither ≤P-minimal nor ≤P-maximal. For each n ∈ N,
let {xn} = ϕn[p−1(x)]. For any n, r ∈ N, there is m0 > n such that for all m > m0,

min{|{b ∈ Pm | b < xm, ϕ
m
n (b) = xn}|, |{b ∈ Pm | b > xm, ϕ

m
n (b) = xn}|} ≥ r.

Proof. Since p−1(x) is neither ≤P-minimal nor ≤P-maximal, there is n0 > n such that
xn0 is neither ≤Pn0 -minimal nor ≤Pn0 -maximal. Let a, a′ be the RPn0 -neighbors of xn0

different from xn0 . By Lemma 1.3.8 it follows that x ∈ int(Jxn0Kϕn0
), so x has positive

distance from JaKϕn0
and Ja′Kϕn0

. By Lemma 1.2.9(2), there is m0 > n0 for which the
thesis holds.

Lemma 4.2.3. Let J1, . . . , J ` be distinct connected components of F/RF , such that
J1, . . . , Jk are arcs and Jk+1, . . . , J ` are singletons, where 0 ≤ k ≤ `. Assume that
p−1(x) is a singleton, for any x endpoint of some J i. For 1 ≤ i ≤ k, let xi ∈ J i be
a point which is not an endpoint, such that p−1(xi) is a singleton. For each n ∈ N,
call J in = γn[p−1(J i)], and

{
xin
}

= γn[p−1(xi)]. Let P ∈ F0, and ϕ : P → Fn an
epimorphism. For 1 ≤ i ≤ `, let Ii ⊆ P be R-connected and such that ϕ[Ii] = J in;
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assume moreover that if J i is a singleton, then Ii is a singleton as well. For 1 ≤ i ≤ k,
let yi ∈ ϕ−1(xin). Then there exist m > n and an epimorphism ψ : Fm → P such that:

• ψ[J im] = Ii for 1 ≤ i ≤ `;

• ψ(xim) = yi for 1 ≤ i ≤ k; and

• ϕψ = γmn .

Proof. Let r = max{
∣∣ϕ−1(a)

∣∣ | a ∈ Fn}. For 1 ≤ i ≤ ` and m ∈ N, let Bi
m ∈ MC(Fm)

be such that J im ⊆ Bi
m. Let P ′ ∈ F0 be the structure obtained as the disjoint union of

` + 1 copies of P and α : P ′ → P be the epimorphism whose restriction to each copy
of P is the identity. By (F2) there are m′ > n and an epimorphism ψ′ : Fm′ → P ′ such
that ϕαψ′ = γm

′
n . By Lemma 1.3.8 the endpoints of J i belong to

⋃
a∈Fm′

int(JaKγm′ ),
for 1 ≤ i ≤ `, so we can apply Lemma 4.1.4 to find m0 > m′ such that for all m > m0

and 1 ≤ i ≤ ` we obtain that γmm′ [B
i
m] = J im′ and, if J

i is an arc,
∣∣(γmn )−1(a) ∩ J im

∣∣ > r

for each a ∈ J in. For 1 ≤ i ≤ k, p−1(xi) is a singleton and is neither ≤F-minimal
nor ≤F-maximal, so by Lemma 4.2.2 there is m1 > m0 such that for all m > m1 and
1 ≤ i ≤ k,

min
{∣∣{b ∈ Fm ∣∣ b < xim, γ

m
n (b) = xin

}∣∣, ∣∣{b ∈ Fm ∣∣ b > xim, γ
m
n (b) = xin

}∣∣} ≥ r. (4.1)

Now we use Lemma 4.1.3 to define, for 1 ≤ i ≤ `, an epimorphism ψi : Bi
m → Ii such

that ψi[J im] = Ii, ϕψi = γmn Bi
m
, and such that, moreover, ψi(xim) = yi when 1 ≤ i ≤ k.

Let ψ : Fm → P be defined by

ψ(b) =

{
αψ′γmm′(b) if b /∈

⋃`
i=1B

i
m

ψi(b) if b ∈ Bi
m

.

Then ϕψ = γmn and ψ is an epimorphism. Indeed, ψ is LR-preserving by construction
and for each B ∈ MC(P ) there is C ∈ MC(Fm) such that ψ′γmm′ [C] equals one of the
copies of B in P ′, as there are more copies of B in P ′ than maximal chains of Fm on
which ψ differs from αψ′γmm′ .

The connected components of Theorem 4.2.1 might not satisfy the hypotheses of
Lemma 4.2.3, since some of the endpoints may be non-singleton RF-classes, so we
cannot apply Lemma 4.2.3 directly. Therefore we first need the following lemma.

Lemma 4.2.4. Let ∼⊆ RF be an equivalence relation on F which is the equality but
on finitely many points. Then F/∼ with the induced LR-structure is isomorphic to F.

Proof. Let ` be the number of ∼-equivalence classes of cardinality greater than 1,
that is, by Lemma 3.2.2, of cardinality exactly 2. Denote these equivalence classes by
{x1, x′1}, . . . , {x`, x′`}. To prove that F/∼ is isomorphic to F we show that F/∼ satisfies
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properties (L1), (L2) and (L3′). Inductively, it is enough to prove the assertion for ` = 1.
Notice also that the quotient map q : F→ F/∼ is an epimorphism.

Property (L1) follows from (L3′) by considering, for any P ∈ F0, epimorphisms
from F/∼ and P to a structure in F0 with one point.

To check that (L3′) holds, fix P,Q ∈ F0 and epimorphisms ψ : F/∼ → P,ϕ : Q→ P

with the objective of finding an epimorphism θ : F/∼ → Q such that ϕθ = ψ. Let
Q′ ∈ F0 be the structure obtained from Q by substituting each a ∈ Q with a chain
{a0, a1} of length 2. In other words:

• Q′ = {a0, a1 | a ∈ Q};

• RQ
′ is the smallest reflexive and symmetric relation such that

– a0 R
Q′ a1 for every a ∈ Q,

– a1 R
Q′ a′0 whenever a RQ a′, with a <Q a′;

• ai ≤Q
′
a′j if and only if either a = a′, i ≤ j, or a <Q a′.

Let χ : Q′ → Q be the epimorphism ai 7→ a. By (L3′) for F there exists θ′ : F → Q′

such that ϕχθ′ = ψq. Let C = θ′[{x1, x′1}]. Let χ′ : Q′ → Q be defined as

χ′(ai) =

a if ai 6∈ C,

χ(maxC) if ai ∈ C.

Then χ′ is an epimorphism using Lemma 3.1.8, which is applicable as ∀a ∈ Q′ χ′(a0) =

a. Define θ(y) = χ′θ′(x) for any x ∈ q−1(y). This is well defined as χ′θ′(x1) =

χ′θ′(x′1), and is the required epimorphism: continuity holds since for each a ∈ Q, the
set (χ′θ′)−1(a) is a clopen ∼-invariant subset of F, so q[(χ′θ′)−1(a)] = θ−1(a) is clopen
in F/∼ .

For (L2) let {V1, . . . , Vr} be a clopen partition of F/∼ . Consider the induced clopen
partition

{
q−1(V1), . . . , q

−1(Vr)
}

of F. By (L2) for F, there exist P ′ ∈ F0 and an
epimorphism ϕ′ : F → P ′ which refines the partition. Let P ∈ F0 be the quotient of
P ′ which identifies a, a′ if and only if a = a′ or a, a ∈ ϕ′[{x1, x′1}]. Then the quotient
map ψ : P ′ → P is an epimorphism, so ϕ(y) = ψϕ′(x) for any x ∈ q−1(y) is a well
defined epimorphism. Since ψϕ′ refines

{
q−1(V1), . . . , q

−1(Vr)
}
, it follows that ϕ refines

{V1, . . . , Vr}.

Proof of Theorem 4.2.1. By Lemma 4.2.4, up to considering an isomorphic structure,
we can assume that the preimages of the endpoints of all the J i’s and Ii’s under the
quotient map p : F → F/RF are singletons, as well as the preimages of the xi’s and
yi’s.

For 1 ≤ i ≤ `, let J i∞ = p−1(J i), Ii∞ = p−1(Ii); for 1 ≤ i ≤ k, let
{
xi∞
}

=

p−1(xi),
{
yi∞
}

= p−1(yi). For each n ∈ N, for 1 ≤ i ≤ `, let J in = γn[J i∞], Iin = γn[Ii∞];
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for 1 ≤ i ≤ k, let xin = γn(xi∞), yin = γn(yi∞). When J i (equivalently, Ii) is a singleton,
then J in, Iin are singletons for every n ∈ N.

Let n0 = m0 = 0 and ϕ0 : Fm0 → Fn0 be the identity. As F0 consists of a
single point, all the hypotheses of Lemma 4.2.3 are satisfied where n, P, Ii, yi, ϕ of the
lemma are 0, F0, I

i
0, y

i
0, ϕ0, respectively. Suppose that nj ,mj , ϕj : Fmj → Fnj have

been defined and are such that ϕj [Iimj
] = J inj

for 1 ≤ i ≤ `, and ϕj(y
i
mj

) = xinj
for

1 ≤ i ≤ k. By Lemma 4.2.3 there exist nj+1 > nj and ψj : Fnj+1 → Fmj such that
ϕjψj = γ

nj+1
nj , ψj [J inj+1

] = Iimj
, for 1 ≤ i ≤ `, and ψj(x

i
nj+1

) = yimj
, for 1 ≤ i ≤ k.

Now Fmj , Fnj+1 and ψj satisfy the hypotheses of Lemma 4.2.3 with the roles of the
I’s and J ’s reversed, so there exist mj+1 > mj and ϕj+1 : Fmj+1 → Fnj+1 such that
ψjϕj+1 = γ

mj+1
mj , ϕj+1[I

i
mj+1

] = J inj+1
for 1 ≤ i ≤ `, and ϕj+1(y

i
mj+1

) = xinj+1
, for

1 ≤ i ≤ k.
Let ϕ,ψ : F → F be the unique epimorphisms such that for each j ∈ N, γnjϕ =

ϕjγmj and γmjψ = ψjγnj+1 . Then ϕψ and ψϕ are the identity, so ϕ,ψ ∈ Aut(F). As
for each j ∈ N, γmjψ[J i∞] = ψjγnj+1 [J i∞] = ψj [J

i
nj+1

] = Iimj
for 1 ≤ i ≤ `, it follows

that ψ[J i∞] = Ii∞; from γmjψ[xi∞] = ψjγnj+1 [xi∞] = ψj [x
i
nj+1

] = yimj
, it follows that

ψ[xi∞] = yi∞, for 1 ≤ i ≤ k. Let h : F/RF → F/RF be defined by h(x) = pψ(u) for any
u ∈ p−1(x). Then h ∈ Aut(F/RF ) and h[J i] = Ii, for 1 ≤ i ≤ `, and h(xi) = yi for
1 ≤ i ≤ k.

To lighten notation, let L = L(F/RF ,≤F/R
F
), U = U(F/RF ,≤F/R

F
).

Lemma 4.2.5. There is h ∈ Homeo(F/RF ) which switches U and L.

Proof. For any LR-structure A, let A∗ be the LR-structure with the same support as
A, with RA∗ = RA and u ≤A∗ u′ if and only if u′ ≤A u. Then (A∗)∗ = A and a function
ϕ : B → A is an epimorphism from B to A if and only if it is an epimorphism from B∗

to A∗. Now, if A ∈ F0, then A∗ ∈ F0, so it is straightforward to check that (L1), (L2),
(L3) hold for F∗. It follows that F∗ is the projective Fraïssé limit of F0 and thus that it is
isomorphic to F, via an isomorphism α : F→ F∗. Let h : F/RF → F/RF be defined by
letting h(x) = pα(u) for any u ∈ p−1(x). Then h is the required homeomorphism.

Corollary 4.2.6. The Fraïssé fence is 1/3-homogeneous. The orbits of the action of
Homeo(F/RF ) on F/RF are L ∩ U, L4 U, and F/RF \ (L ∪ U).

Proof. The above subspaces are clearly invariant under homeomorphisms. We conclude
by Theorem 4.2.1 and Lemma 4.2.5.

The Fraïssé fence also enjoys a different kind of homogeneity property, namely that
of h-homogeneity.

Proposition 4.2.7. The Fraïssé fence is h-homogeneous.
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Proof. Fix a nonempty clopen subset U of F/RF . By Lemma 3.2.7, there is n0 ∈ N
such that for all n ≥ n0, there is Sn ⊆ MC(Pn) for which U =

⋃
a∈

⋃
Sn

JaKγn . Let
Qn =

⋃
Sn. We prove that (Qn, γ

m
n Qm

)n≥n0 is a fundamental sequence in F0, thus
showing that p−1(U), with the LR-structure inherited from F, is isomorphic to F, which
yields the result.

Let n ≥ n0, P ∈ F0 and ϕ : P → Qn. Let P ′ = P t (Fn \ Qn) and ϕ′ : P ′ → Fn

be ϕ on P and the identity on Fn \ Qn. Since Qn is RPn-invariant in Fn and ϕ

is an epimorphism, so is ϕ′, by Lemma 3.1.8. By (F2) there are m ≥ n and an
epimorphism ψ′ : Fm → P ′ such that ϕ′ψ′ = γmn . We see that (γmn )−1(Qn) = Qm.
Indeed, γ−1m (Qm) = γ−1n (Qn) = p−1(U), so Qm ⊆ (γmn )−1(Qn) ⊆ γm[γ−1n (Qn)] =

γm[p−1(U)] = Qm. Therefore (ψ′)−1(P ) = Qm, so ψ = ψ′ Qm
: Qm → P is an

epimorphism such that ϕψ = γmn Qm
. We conclude by Proposition 1.1.2.

4.3 A strong universality property

Theorem 3.3.2 shows that any smooth fence embeds in the Cantor fence. We show
a stronger universality property for the Fraïssé fence, namely that any smooth fence
embeds in the Fraïssé fence via a map which preserves endpoints.

Theorem 4.3.1. For any smooth fence Y there is an embedding f : Y → F/RF such
that f [E(Y )] ⊆ E(F/RF ). Moreover, fixing a strongly compatible order ≤Y on Y , the
embedding f can be constructed so that f [L(Y,≤Y )] ⊆ L, f [U(Y,≤Y )] ⊆ U.

Proof. By Corollary 3.4.4 there is a projective sequence (Pn, ϕ
m
n ), with projective limit

P such that P/RP is homeomorphic to Y , via h : P/RP → Y ; moreover, h is an
isomorphism between ≤P/RP and ≤Y . Therefore it is enough to prove the assertion for
(P/RP ,≤P/R

P
).

Let q : P → P/RP be the quotient map. We procede by induction to define a
topological LR-structure P′ ⊆ F isomorphic to P. Let a0 ∈ F0, P ′0 = {a0} ⊆ F0, and
θ0 : P0 → P ′0 be the unique epimorphism.

Suppose one has defined in, jn ∈ N, P ′n ⊆ Fin ; assume also that, with the induced
structure, P ′n ∈ F0 and there is an epimorphism θn : Pjn → P ′n. Let F ′n = Fin t Pjn
and θ′n : F ′n → Fin be the identity on Fin and θn on Pjn . By (F2) there are in+1 > in

and an epimorphism ψn : Fin+1 → F ′n such that γin+1

in
= θ′nψn. Then ψ−1n (Pjn) is

an RFin+1 -invariant subset of Fin+1 , that is the union of a subset of MC(Fin+1). Let
P ′n+1 ⊆ ψ−1n (Pjn) be in F0, with respect to the induced LR-structure, and minimal,
under inclusion, with the property that ψn P ′n+1

is an epimorphism onto Pjn . This
means that there is a bijection g : MC(Pjn) → MC(P ′n+1) such that ψn[g(A)] = A

and
∣∣ψ−1(minA) ∩ g(A)

∣∣ =
∣∣ψ−1(maxA) ∩ g(A)

∣∣ = 1, for any A ∈ MC(Pjn). Let
r = max{

∣∣ψ−1n (a) ∩ g(A)
∣∣ | a ∈ A,A ∈ MC(Pjn)}.
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Since the sequence (Pn, ϕ
m
n ) is fine, by Lemma 1.2.3, there is jn+1 > jn such that

for all a, b ∈ Pjn with d
RPjn

(a, b) = 2, and all a′ ∈ (ϕ
jn+1

jn
)−1(a), b′ ∈ (ϕ

jn+1

jn
)−1(b), it

holds that d
R

Pjn+1
(a′, b′) ≥ r + 1; this means that if B is an RPjn+1 -connected chain

in Pjn+1 and c ∈ ϕjn+1

jn
[B] \ {minϕ

jn+1

jn
[B],maxϕ

jn+1

jn
[B]}, then

∣∣∣(ϕjn+1

jn
)−1(c) ∩B

∣∣∣ ≥ r.
We find an epimorphism θn+1 : Pjn+1 → P ′n+1 by defining it on each maximal chain.
Fix B ∈ MC(Pjn+1). Let A ∈ MC(Pjn) be such that ϕjn+1

jn
[B] ⊆ A and B′ ⊆ g(A)

be the minimal subset such that ψn[B′] = ϕ
jn+1

jn
[B]. Then B,ϕjn+1

jn
[B] and B′ satisfy

the hypothesis of Lemma 4.1.3(2), so there is an epimorphism θB : B → B′ such that
ψnθB = ϕ

jn+1

jn B. Let θn+1 =
⋃
B∈MC(Pjn+1

) θB. Then θn+1 is an epimorphism by

Lemma 3.1.8: for each A ∈ MC(Pjn), there is B ∈ MC(Pjn+1) with ϕjn+1

jn
[B] = A, so

θn+1[B] ⊆ g(A), and by minimality of g(A) it follows that θn+1[B] = g(A). Note that
ψn P ′n+1

θn+1 = ϕ
jn+1

jn
.

The functions γin+1

in P ′n+1
: P ′n+1 → P ′n are epimorphisms, so P′ = {u ∈ F | ∀n ∈

N γin(u) ∈ P ′n}, with the induced LR-structure is the limit of the projective sequence
(P ′n, γ

im
in P ′m

). Since γin+1

in P ′n+1
θn+1 = θnψn P ′n+1

θn+1 = θnϕ
jn+1

jn
, let θ : P → P′ be

the unique epimorphism such that for each n ∈ N, γin P′θ = θn+1ϕjn+1 . Similarly, as
ϕ
jn+1

jn
ψn+1 P ′n+2

= ψn P ′n+1
θn+1ψn+1 P ′n+2

= ψn P ′n+1
γ
in+2

in+1 P ′n+2
, let ψ : P′ → P be the

unique epimorphism such that for each n ∈ N, ϕjnψ = ψn P ′n+1
γin+1 P′ . Then θψ and

ψθ are the identity, so θ, ψ are isomorphisms. Let f : P/RP → F/RF be defined by
letting f(x) = pθ(w) for any w ∈ q−1(x). Then f is an embedding.

We show that ≤F-maximal (respectively, ≤F-minimal) points of P′ are ≤F-maximal
(respectively, ≤F-minimal) in F, thus concluding the proof. To this end, let u ∈ P′

be ≤F-maximal in P′ and fix n ∈ N. Let am = max{a ∈ P ′m | γim(u) ≤ a}; by
Lemma 3.5.2, there is m > n such that γimin (am) = γin(u). By minimality of P ′m, it
follows that ψm−1(am) is ≤F ′m−1-maximal, so for any a ∈ Fim with am ≤ a, we have
ψm−1(a) = ψm−1(am), so γimim−1

(a) = γimim−1
(am). It holds therefore that γimin (a) =

γimin (am) = γin(u). By Lemma 3.5.2, it follows that u is ≤F-maximal in F. The case for
≤F-minimal points is analogous.

4.4 Spaces of endpoints of the Fraïssé fence

By Lemma 4.2.5, L and U are homeomorphic. It also follows from that lemma that
U \ L,L \ U are homeomorphic. We therefore state the results in this section solely in
terms of U,L ∩ U, and U \ L, the latter of which we denote by M. In Theorem 4.4.7
below we see that L ∩ U is homeomorphic to the Baire space NN.

Corollary 4.4.1. M and L ∩ U are ω-homogeneous.

Proof. From Theorem 4.2.1.

Proposition 4.4.2. M is one-dimensional.
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Proof. As M is a subset of a one-dimensional space, its dimension is at most one. We
now show that it is at least one. Let x ∈M and J be the arc component of F/RF to
which it belongs. Let O be an open neighborhood of x in F/RF such that J 6⊆ cl(O).
Let n0 be such that there is B0 ∈ MC(Fn0) with

J ⊆
⋃
a∈B0

JaKγn0
, JmaxB0Kγn0

⊆ O,

which exists by Corollary 3.5.3. Choose a0 ∈ B0 such that Ja0Kγn0
⊆ F/RF \ cl(O) and

let a′0 ∈ B0 be the minimum such that
⋃
a≥a′0

JaKγn0
⊆ O. Notice that a0 < a′0.

Suppose one has defined ni ∈ N, Bi ∈ MC(Fni), ai, a
′
i ∈ Bi, with ai < a′i. By

Lemma 4.1.1 there exists an arc component Ji of F/RF whose endpoints belong to
int(JaiKγni

), int(Ja′iKγni
), respectively. By Corollary 3.5.3 there are ni+1 > ni and

Bi+1 ∈ MC(Fni+1) such that

Ji ⊆
⋃

a∈Bi+1

JaKγni+1
⊆
⋃
a∈Bi

JaKγni
,

JmaxBi+1Kγni+1
⊆

q
a′i

y
γni
.

Choose ai+1 ∈ Bi+1 such that Jai+1Kγni+1
⊆ JaiKγni

and let a′i+1 ∈ Bi+1 be the minimum
such that

⋃
a≥a′i+1

JaKγni+1
⊆ O, so in particular ai+1 < a′i+1. Since the mesh of

(JFnKγn)n∈N goes to 0, we can furthermore choose ni+1 so that
q
a′i+1

y
γni+1

* Ja′iKγni
,

so that in particular a′i+1 6= maxBi+1.
Let K =

⋂
i∈N
⋃
a∈Bi

JaKγni
= limi→∞

⋃
a∈Bi

JaKγni
. By Corollary 1.2.11, K is con-

nected, call y its maximum. We prove that

y ∈M and y ∈ clM (O ∩M) \O,

which concludes the proof.
Since

⋃
a∈Bi

JaKγni
∩ Ja0Kγn0

6= ∅ for each i, it follows that K∩ Ja0Kγn0
6= ∅, so y 6∈ L.

Suppose there exists y′ ∈ F/RF , y <F/R
F
y′. Let U be an open set containing K while

avoiding y′. There thus is i ∈ N such that
⋃
a∈Bi

JaKγni
⊆ U . For each a′ ∈ Fni with

y′ ∈ Ja′Kγni
, it follows that a′ 6∈ Bi as Ja′Kγni

6⊆ U . But y ≤P/RP
y′ implies a ≤ a′ for

some a ∈ Bi, a contradiction. So y ∈M.
Since Ja′iKγni

⊆ O and max Ji ∈ int
(
Ja′iKγni

)
for each i ∈ N, it follows that y ∈

clM (O ∩M). Suppose that y ∈ O. Since y has positive distance from K \ O, there
exists i ∈ N such that y 6∈

⋃
{JaKγni

| a ∈ Bi, a ≤ a′i}, as a′i is the minimum element
of Bi such that

⋃
a≥a′i

JaKγni
⊆ O, and the diameter of the Ja′iKγni

goes to 0. It follows
that y 6∈

⋃
a∈Bi+1

JaKγni+1
as
⋃
a∈Bi+1

JaKγni+1
⊆
⋃
{JaKγni

| a ∈ Bi, a ≤ a′i}, so y 6∈ K, a
contradiction.

Corollary 4.4.3. U is 1/2-homogeneous. In particular, the orbits of the action of
Homeo(U) on U are L ∩ U and M.
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Proof. By Theorem 4.2.1, for any x, x′ ∈ M, y, y′ ∈ L ∩ U distinct, there is h ∈
Aut(F/RF ) such that h(x) = x′, h(y) = y′. Since h U ∈ Homeo(U), it follows that there
are at most 2 orbits of the action of Homeo(U) on U. Therefore it suffices to show that
U is not homogeneous. By Lemma 3.5.7 the space U is Polish, by Proposition 3.5.5 it is
not cohesive and by Proposition 4.4.2 it is not zero-dimensional. By [Dij06, Proposition
2], a Polish, non-cohesive, non-zero-dimensional space is not homogeneous.

Proposition 4.4.4. M and L ∩ U are dense in F/RF .

Proof. It is easy too see that M is dense in F/RF by Theorem 4.1.2.
To see that L ∩ U is dense, let O be a nonempty open subset of F/RF and let

n0 ∈ N, a0 ∈ Fn0 be such that Ja0Kγn0
⊆ O. We define a sequence (ai)i∈N by induction.

Suppose that ni and ai ∈ Fni are defined and let Pi = Fni t {b} and ϕi : Pi → Fni be
the identity on Fm and ϕi(b) = ai. By (L3′) there are ni+1 > ni and an epimorphism
ψi : Fni+1 → Pi such that ϕiψi = γ

ni+1
ni . By Lemma 3.1.7, there exists Bi ∈ MC(Fni+1)

such that ψi[Bi] = {b}, so γni+1
ni [Bi] = {ai}. Choose ai+1 ∈ Bi, so γni+1

ni (ai+1) = ai.
Let u ∈ F be such that γni(u) = ai for each i ∈ N. For each i ∈ N, we have that

γni+1(u) ∈ Bi and γni+1
ni (maxBi) = γ

ni+1
ni (minBi) = ai = γni(u). By Lemma 3.5.2, u

is both ≤F-minimal and ≤F-maximal. It follows that p(u) ∈ L ∩ U. Since γn0(u) = a0,
we have p(u) ∈ Ja0Kγn0

⊆ O.

Proposition 4.4.5. M,U have the property that each nonempty open set contains a
nonempty clopen subset. In particular they are not cohesive.

Proof. The result for U follows from Propositions 4.4.4 and 3.5.5.
Let O be an open subset of F/RF such that O ∩M 6= ∅. Up to taking a subset

we can assume O is ≤P/RP-convex. By Theorem 4.1.2 there exists an arc component
J of F/RF whose endpoints both belong to O, so by ≤P/RP-convexity, J ⊆ O. By
Corollary 3.5.4 there exist n ∈ N and B ∈ MC(Fn) such that J ⊆

⋃
a∈BJaKγn ⊆ O.

Since
⋃
a∈BJaKγn is clopen in F/RF by Lemma 3.2.6, it follows that

⋃
a∈BJaKγn ∩M is

clopen in M, and it is nonempty as it contains max J .

Finally we look at E(F/RF ) = L ∪ U.

Proposition 4.4.6. The spaces E(F/RF ) and L4U are not totally separated. In fact,
in L4 U the quasi-component of each point has cardinality 2.

Proof. Let x ∈ L 4 U, say x ∈ M and let z be the least element of the connected
component J of x in F/RF . Let U be a clopen neighborhood of x in L4 U, and let O
be open in F/RF such that U = O ∩ (L4 U).
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If J * cl(O), from the proof of Proposition 4.4.2 it follows that there exists some
y ∈ clM (O ∩M) \O, so

∅ 6= clM (O ∩M) \O ⊆ clL4U (O ∩M) \O ⊆
⊆ clL4U(O ∩ (L4 U)) \ (O ∩ (L4 U)) = ∂L4U(U),

contradicting the fact that U is clopen in L4 U.
If J ⊆ cl(O) but z /∈ O, given any open neighborhood V of z in F/RF , by Theo-

rem 4.1.2 there is some w ∈M∩O∩V , so w ∈ U∩V . This implies that z ∈ clL4U(U)\U ,
contradicting again the fact that U is clopen in L4 U.

Therefore the intersection of all clopen neighborhoods of x in L4 U also contains
z. On the other hand any two points belonging to distinct components of F/RF can
obviously be separated by clopen sets, so the quasi-component of x in L4U is {x, z}.

Since almost zero-dimensional, T0 spaces are totally separated, it follows that the
spaces L4U and E(F/RF ) are not almost zero-dimensional. This should be contrasted
with Proposition 3.5.6.

We sum up what we know about the spaces of endpoints of the Fraïssé fence.

Theorem 4.4.7.

(i) L ∩ U is homeomorphic to the Baire space NN.

(ii) E(F/RF ) is Polish and not totally separated.

(iii) U is 1/2-homogeneous, Polish, almost zero-dimensional, one dimensional and not
cohesive.

(iv) M is homogeneous, strongly σ-complete, almost zero-dimensional, one dimen-
sional and not cohesive.

Proof.

(i) By Corollary 3.5.8 and Proposition 3.5.5, L ∩ U is Polish and zero-dimensional.
By [Kec95, Theorem 7.7] it is enough to show that every compact subset of L∩U
has empty interior. So let K be such set, and suppose toward contradiction that
there is an open subset O of U such that ∅ 6= O∩L∩U = O∩L ⊆ K. Recall that,
by Proposition 4.4.4, L∩U is dense and codense in U. Then O \ (L∩U) = O \K
is open in U. Therefore, by denseness of L ∩ U, it follows that O \ (L ∩ U) = ∅,
contradicting codenseness.

(ii) This holds by Lemma 3.5.7 and Proposition 4.4.6.

(iii) This holds by Corollary 4.4.3, Lemma 3.5.7, and Propositions 3.5.6 and 4.4.2 and
4.4.5.
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(iv) This holds by Corollary 4.4.1, Remark 3.5.9, and Propositions 3.5.6 and 4.4.2 and
4.4.5.

A space with the properties listed in (iv) was first exhibited in [Dij06] as a coun-
terexample to a question by Dijkstra and van Mill. We do not know however whether
the two spaces are homeomorphic.

Question 4.4.8. Is M homeomorphic to the space in [Dij06]?

4.5 Dynamics of the Fraïssé fence

We prove that the Fraïssé fence is approximately projectively homogeneous in the
class of smooth fences and strongly compatible orders. Recall that for each α ∈ Aut(F)

there is α∗ ∈ Aut(F/RF ) such that pα = α∗p.

Proposition 4.5.1. F satisfies (SL2) with respect to F0.

Proof. Let U = {Ua | a ∈ P} be a P -like open cover of F/RF , for some P ∈ F0. Let
n ∈ N be such that JFnKγn refines U . Let ϕ : Fn → P be defined by mapping a ∈ Fn
to the ≤P -maximal b ∈ P such that JaKγn ⊆ Ub. We prove that ϕ is an epimorphism.
By (A0), for each b ∈ P , Ub \

⋃
c 6=b Uc 6= ∅, so ϕ is surjective.

Suppose a RFn a′, then there is x ∈ JaKγn ∩ Ja′Kγn . Then x ∈ Uϕ(a) ∩ Uϕ(a′), so
ϕ(a)RP ϕ(a′), by (A1).

Suppose b RP b′ and, without loss of generality, that b ≤P b′. By condition (A1),
Ub ∩ Ub′ 6= ∅. Consider B ∈ MC(Fn) such that

⋃
a∈BJaKγn ∩ Ub ∩ Ub′ 6= ∅. Let

a = max
{
b ∈ B

∣∣∣ JbKγn ⊆ Ub, JbKγn * Ub′
}
,

and a′ be its immediate ≤Fn-successor. Then a RFn a′ and ϕ(a) = b, ϕ(a′) = b′.
Suppose a ≤Fn a′. By Lemma 4.1.1, there are x ∈ int(JaKγn), x′ ∈ int(Ja′Kγn) such

that x ≤F/RF
x′. By (A2) there are b ≤P b′ such that x ∈ Ub, x′ ∈ Ub′ . By definition of

ϕ, ϕ(a) is either equal to, or the immediate ≤P -successor of, b, and similarly for ϕ(a′)

and b′. Since P ∈ F0, it thus holds that ϕ(a) ≤P ϕ(a′).
Finally, suppose b ≤P b′. By (A3) there are x ∈ Ub \

⋃
c6=b Uc, x

′ ∈ Ub′ \
⋃
c 6=b′ Uc

with x ≤F/RF
x′. Let a, a′ ∈ Fn be such that x ∈ JaKγn , x

′ ∈ Ja′Kγn , so a ≤
Fn a′.

For any c 6= b, JaKγn 6⊆ Uc, since x ∈ Ub \
⋃
c 6=b Uc, and similarly for a′, b′. Thus

ϕ(a) = b, ϕ(a′) = b′.
Then ϕγn : F→ A is an epimorphism such that JaKϕγn ⊆ Ua for each a ∈ A.

By Theorem 3.4.3, each smooth fence (Y,≤Y ) with a strongly compatible order
admits a F0-suitable sequence. By Theorem 1.4.6 and Corollary 1.4.7 we have the
following two results.
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Corollary 4.5.2. Let (Y,≤Y ) be a smooth fence with a strongly compatible order. Let
f0, f1 : F/RF → (Y,≤Y ) be epimorphims, and let V be an open cover of Y . Then there
is α ∈ Aut(F) such that f0α∗ and f1 are V-close, that is, for each x ∈ F/RF there is
V ∈ V such that f0α∗(x), f1(x) ∈ V .

Corollary 4.5.3. Aut(F) embeds densely in Aut(F/RF ).

4.5.1 Aut(F) and Aut(F/RF ) have a dense conjugacy class

We prove that the group of automorphisms of F has a dense conjugacy class —
a property also known as topological Rokhlin property —, then transfer the result
to the automorphisms of its quotients, via Corollary 4.5.3. The existence of a dense
conjugacy class in a group G implies that if A ⊆ G is conjugacy invariant and has the
Baire property then it is either meager or comeager.

Let S be a binary relation symobl. Let F+
0 be the family of LR∪{S} finite structures

(P, SP ), such that P ∈ F0 and there are an epimorphism ϕ : F → P and α ∈ Aut(F)

such that (a, b) ∈ SP if and only if α
[
ϕ−1(a)

]
∩ϕ−1(b) 6= ∅. By [Kwi14, Theorem A.1],

Aut(F) has a dense conjugacy class if and only if F+
0 has (JPP). By [BK15, Lemma

3.11], (P, SP ) ∈ F+
0 if and only if there are Q ∈ F0 and epimorphisms ϕ1 : Q→ P and

ϕ2 : Q→ P such that SP = {(ϕ1(a), ϕ2(a)) | a ∈ Q}. Say that the triple (Q,ϕ1, ϕ2) is
a witness that (P, SP ) ∈ F+

0 .
Given P, P ′ ∈ F+

0 , define P oP ′ to be the LR ∪{S} structure with domain P ×P ′,
such that SPoP ′ = SP × SP ′ , (a, a′) RPoP

′
(b, b′) if and only if a = b, a′ RP

′
b′, and

(a, a′) ≤PoP ′ (b, b′) if and only if a = b, a′ ≤P ′ b′.

Theorem 4.5.4. Aut(F) has a dense conjugacy class.

Proof. We prove that F+
0 satisfies (JPP). Let P, P ′ ∈ F+

0 , with witnesses (Q,ϕ1, ϕ2),
(Q′, ϕ′1, ϕ

′
2) be given. Let T = P o P ′ t P ′ o P and consider the projections θ, θ′ from

T to P, P ′, respectively.
First we prove that T ∈ F+

0 . As a LR-structure, T is the disjoint union of a copy
of P for each point of P ′ and a copy of P ′ for each point in P , so T LR ∈ F0. For
i = 1, 2, let ϕi × ϕ′i : QoQ′ → P o P ′ and ϕ′i × ϕi : Q′ oQ→ P ′ o P . Then

QT =
(
QoQ′ tQ′ oQ, ϕ1 × ϕ′1 t ϕ′1 × ϕ1, ϕ2 × ϕ′2 t ϕ′2 × ϕ2

)
is a witness for T ∈ F+

0 . Indeed, QT LR ∈ F0 and the two maps are epimorphisms
since (a, a′) RPoP

′
(b, b′) if and only if a = b and a′ RP

′
b′ if and only if there are

c ∈ Q, c′, d′ ∈ Q′ with c′ RQ′ d′ such that ϕ1(c) = a = b, ϕ′1(c
′) = a′, ϕ′1(d

′) = b′ if and
only if (c, c′)RT (c, d′) and ϕ1×ϕ′1(c, c′) = (a, a′), ϕ1×ϕ′1(c, d′) = (a, b′) = (b, b′). Also,
(a, a′)SPoP

′
(b, b′) if and only if aSP b, a′ SP ′ b′ if and only if there exist c ∈ Q, c′ ∈ Q′

such that ϕ1(c) = a, ϕ2(c) = b, ϕ′1(c
′) = a′, ϕ′2(c

′) = b′ if and only if ϕ1 × ϕ′1(c, c′) =

(a, a′), ϕ2 × ϕ′2(c, c′) = (b, b′). The other case is symmetric.
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Notice that θ, θ′ are LR-epimorphisms by Lemma 3.1.8, since maximal chains are
either mapped to a point or onto an isomorphic maximal chain. Moreover θ(2)(ST ) =

θ(2)(SP ×SP ′ tSP ×SP ′) = θ× θ(SP ×SP ′) = SP , and similarly θ′(2)(ST ) = SP
′ .

By Corollary 4.5.3 and Theorem 4.5.4, we have the following.

Corollary 4.5.5. Aut(F/RF ) has a dense conjugacy class.

We wonder whether the results from [BK19] can be adapted to unveil more dy-
namical information on the Fraïssé fence and its prespace, particularly regarding the
universal minimal flows of their groups of automorphisms. It would therefore be in-
teresting to investigate whether the Ramsey results on the family of finite structures
approximating the Lelek fan can be generalized to F0.
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[AP84] A. V. Arkhangel’skĭı and V. I. Ponomarev, Fundamentals of general topology, Mathematics
and its Applications, D. Reidel Publishing Co., Dordrecht, 1984. MR785749

[BC17] G. Basso and R. Camerlo, Arcs, hypercubes, and graphs as quotients of projective Fraïssé
limits, Math. Slovaca 67 (2017), no. 6, 1281–1294. MR3739359

[BC20] , Fences, their endpoints, and projective Fraïssé theory, 2020. Preprint
arXiv:2001.05338.

[BK15] D. Bartošová and A. Kwiatkowska, Lelek fan from a projective Fraïssé limit, Fund. Math.
231 (2015), no. 1, 57–79. MR3361235

[BK17] , Gowers’ Ramsey theorem with multiple operations and dynamics of the homeomor-
phism group of the Lelek fan, J. Combin. Theory Ser. A 150 (2017), 108–136. MR3645569

[BK19] , The universal minimal flow of the homeomorphism group of the Lelek fan, Trans.
Amer. Math. Soc. 371 (2019), no. 10, 6995–7027. MR3939568

[BO90] W. D. Bula and L. G. Oversteegen, A characterization of smooth Cantor bouquets, Proc.
Amer. Math. Soc. 108 (1990), no. 2, 529–534. MR991691

[Cam10] R. Camerlo, Characterising quotients of projective Fraïssé limits, Topology Appl. 157
(2010), no. 12, 1980–1989. MR2646431

[Car68] J. H. Carruth, A note on partially ordered compacta, Pacific J. Math. 24 (1968), 229–231.
MR222852

[CC89] J. J. Charatonik and W. J. Charatonik, Images of the Cantor fan, Topology Appl. 33
(1989), no. 2, 163–172. MR1020278

[Cha67] J. J. Charatonik, On fans, Dissertationes Math. Rozprawy Mat. 54 (1967), 39. MR0227944

[Cha89] W. J. Charatonik, The Lelek fan is unique, Houston J. Math. 15 (1989), no. 1, 27–34.
MR1002079

[Dij06] J. J. Dijkstra, A homogeneous space that is one-dimensional but not cohesive, Houston J.
Math. 32 (2006), no. 4, 1093–1099. MR2268471

[DvM10] J. J. Dijkstra and J. van Mill, Erdős space and homeomorphism groups of manifolds, Mem.
Amer. Math. Soc. 208 (2010), no. 979, vi+62. MR2742005

[EFT94] H.-D. Ebbinghaus, J. Flum, and W. Thomas, Mathematical logic, Second, Undergraduate
Texts in Mathematics, Springer-Verlag, New York, 1994. Translated from the German by
Margit Meßmer. MR1278260

[Ell60] R. Ellis, Universal minimal sets, Proc. Amer. Math. Soc. 11 (1960), 540–543. MR117716

77



[Eng89] R. Engelking, General topology, Second, Sigma Series in Pure Mathematics, vol. 6, Helder-
mann Verlag, Berlin, 1989. Translated from the Polish by the author. MR1039321

[GTZ19] Y. Gutman, T. Tsankov, and A. Zucker, Universal minimal flows of homeomorphism groups
of high-dimensional manifolds are not metrizable, 2019. Preprint arXiv:1910.12220.

[GYZ14] J. L. Gross, J. Yellen, and P. Zhang (eds.), Handbook of graph theory, Second, Discrete Math-
ematics and its Applications (Boca Raton), CRC Press, Boca Raton, FL, 2014. MR3185588

[IS06] T. Irwin and S. Solecki, Projective Fraïssé limits and the pseudo-arc, Trans. Amer. Math.
Soc. 358 (2006), no. 7, 3077–3096. MR2216259

[Kec95] A. S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156,
Springer-Verlag, New York, 1995. MR1321597

[KOT96] K. Kawamura, L. G. Oversteegen, and E. D. Tymchatyn, On homogeneous totally discon-
nected 1-dimensional spaces, Fund. Math. 150 (1996), no. 2, 97–112. MR1391294

[KPT05] A. S. Kechris, V. G. Pestov, and S. Todorcevic, Fraïssé limits, Ramsey theory, and topo-
logical dynamics of automorphism groups, Geom. Funct. Anal. 15 (2005), no. 1, 106–189.
MR2140630

[Kur68] K. Kuratowski, Topology. Vol. II, New edition, revised and augmented. Translated from
the French by A. Kirkor, Academic Press, New York-London; Państwowe Wydawnictwo
Naukowe Polish Scientific Publishers, Warsaw, 1968. MR0259835

[Kwi12] A. Kwiatkowska, The group of homeomorphisms of the Cantor set has ample generics, Bull.
Lond. Math. Soc. 44 (2012), no. 6, 1132–1146. MR3007646

[Kwi14] , Large conjugacy classes, projective Fraïssé limits and the pseudo-arc, Israel J. Math.
201 (2014), no. 1, 75–97. MR3265280

[Lel60] A. Lelek, On plane dendroids and their end points in the classical sense, Fund. Math. 49
(1960/61), 301–319. MR133806

[Nad92] S. B. Nadler Jr., Continuum theory, Monographs and Textbooks in Pure and Applied Math-
ematics, vol. 158, Marcel Dekker, Inc., New York, 1992. An introduction. MR1192552

[NVT13] L. Nguyen Van Thé, More on the Kechris-Pestov-Todorcevic correspondence: precompact
expansions, Fund. Math. 222 (2013), no. 1, 19–47. MR3080786

[Pan16] A. Panagiotopoulos, Compact spaces as quotients of projective fraisse limits, 2016. Preprint
arXiv:1601.04392.

[Pes02] V. Pestov, MM-spaces and group actions, Enseign. Math. (2) 48 (2002), no. 3-4, 209–236.
MR1955600

[PS18] A. Panagiotopoulos and S. Solecki, A combinatorial model for the menger curve, 2018.
Preprint arXiv:1803.02516.

[PS20] A. Panagiotopoulos and S. Solecki, The generic combinatorial simplex, 2020. Preprint
arXiv:2001.00908.

[Ros82] J. G. Rosenstein, Linear orderings, Pure and Applied Mathematics, vol. 98, Academic Press,
Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1982. MR662564

[RZ18] C. Rosendal and J. Zielinski, Compact metrizable structures and classification problems, J.
Symb. Log. 83 (2018), no. 1, 165–186. MR3796281

[Usp00] V. Uspenskij, On universal minimal compact G-spaces, Proceedings of the 2000 Topology
and Dynamics Conference (San Antonio, TX), 2000, pp. 301–308. MR1875600

[Zuc16] A. Zucker, Topological dynamics of automorphism groups, ultrafilter combinatorics, and the
generic point problem, Trans. Amer. Math. Soc. 368 (2016), no. 9, 6715–6740. MR3461049

78


	Index
	Acknowledgments

	Introduction
	Projective Fraïssé theory
	Compact metrizable structures
	Fine projective sequences
	Irreducible functions and regular quasi-partitions
	Suitable sequences
	A second order digression
	A negative result

	Finitely representable spaces
	Some preliminary facts
	Closure under topological operations
	Arcs, hypercubes, graphs
	Questions

	Smooth fences
	Finite Hasse forests
	Projective limits of sequences in F0 
	Fences
	Smooth fences and F0
	Spaces of endpoints of smooth fences

	The Fraïssé fence
	A topological characterization
	Homogeneity properties
	A strong universality property
	Spaces of endpoints of the Fraïssé fence
	Dynamics of the Fraïssé fence

	Bibliography

